Зарядные устройства для авто самодельные: Схема зарядного устройства для автомобильного аккумулятора своими руками.

Содержание

Мощное зарядное устройство для автомобиля

Самодельные зарядные устройства всегда были и будут востребованы, так как число автолюбителей растет, а промышленные аппараты дороги и не всегда удовлетворяют потребности пользователей. В связи с такой тенденцией, в этой статье будет рассматриваться вариант зарядного устройства на ток до 50 А и мощностью – 600 Вт. Выходную мощность при желании можно увеличить, сделав небольшую доработку.

Нетрудно догадаться, что эта схема не с обычным понижающим трансформатором, иначе вес и размер данного устройства был бы увесистый. Как и принято, в последнее время во всем оборудовании, здесь применяется схема, в основе которой лежит  широтно-импульсный модулятор. Такие схемы имеют высокий КПД и не требуют громоздких трансформаторов.

 

Итак, рассмотрим, как работает электронная схема.

Входное напряжение от сети проходит через фильтр, состоящий из дросселей и конденсаторов. Это необходимо для исключения импульсных помех, влияющих на работу модулятора.

Далее напряжение проходит через выпрямительный диодный мост и электролитические конденсаторы. Следует иметь в виду, что конденсаторы лучше ставить с запасом по напряжению, вольт так на 400, иначе через время они могут стрельнуть. Это основная проблема импульсников.

Вся дальнейшая схема, состоящая из мощных транзисторов IRF 740, микросхемы IR 2153 и вспомогательных элементов, образуют высокочастотный генератор импульсов. Частота генератора обычно выше 10 кГц и человеческое ухо не слышит этот звук, хотя особо чувствительный слух может слышать высокочастотное пищание.

Управляющим элементом служит именно микросхема, а выходным каскадом являются транзисторы, которые работают по принципу ключей.

Далее переменное напряжение высокой частоты, понижается трансформатором до нужного значения. Трансформатор имеет две вторичные обмотки. Первая служит для питания вентилятора обдува, а вторая собственно для зарядки аккумулятором. В схеме обдува все просто, стоит один диод, конденсатор и ограничительный резистор. Цепи зарядки имеют диодный мост и несколько соединенных параллельно конденсаторов большой емкости. Чем емкость выше, тем стабильнее и качественней выходное напряжение. Если позволяют размеры корпуса можно поставит конденсаторы на 4700 мкф  и 50 В. Диодам также следует уделить особое внимание, они должны быть высокочастотные и на ток не менее 30 А.

Сопротивления 25 Ом в цепи затвора полевого транзистора, выбирают в пределах 0,5-1 Вт. Что касается термистора во входной цепи, то его сопротивление должно быть 5 Ом, а ток, на который он рассчитан ? 5 А.

Силовые транзисторы необходимо установить на алюминиевые или медные радиаторы. Если пластина радиатора общая, транзисторы устанавливают через слюдяные прокладки. При использовании отдельных радиаторов для лучшего теплоотвода применяют термопасту.

В начале статьи было сказано, что можно увеличить выходной ток и мощность. Для этого вместо транзисторов указанных на схеме нужно поставить более мощные и соответственно обеспечить их большим теплоотводом. Тоже касается диодов входного и выходного моста.

Хотелось бы отметить, что многие компоненты, например, трансформатор, диоды и конденсаторы можно взять из ненужного блока питания компьютера.

При исправных деталях и правильном монтаже, устройство должно сразу же заработать. Напряжение на выходе можно замерять мультиметром. Если оно находится в пределах 15 В значит все работает. В рассмотренном варианте ЗУ нет защиты от К.З на выходе и неправильной полярности. Это нужно учитывать и быть внимательным. Во всем другом схема довольно проста и эффективна.

Автор: Etxt


 

Зарядное устройство для автомобильного аккумулятора своими руками: принцип работы, простые схемы

Все владельцы автотранспортных средств знают, что аккумуляторную батарею необходимо периодически заряжать и особенно это актуально в холодную пору года. При наличии навыков в сфере электротехники можно сделать зарядное устройство для автомобильного аккумулятора своими руками. Если все требуемые работы по его созданию были проведены правильно, то оно может оказаться ни чем не хуже заводского изделия.

Принцип работы

Аккумуляторная батарея автомобиля требуется зарядка при снижении напряжения на контактах ниже отметки в 11,2 В. Хотя даже в такой ситуации двигатель может быть запущен, в случае продолжительного простоя автотранспортного средства в АКБ начинают протекать реакции сульфатации пластин, что неизбежно приведет к падению емкости батареи.

Именно поэтому в зимнее время года настоятельно рекомендуется в гараже или на стоянках подзаряжать АКБ и отслеживать напряжение на ее клеммах.

Оптимальным вариантом является снятие аккумулятора с последующим хранением в теплом месте, но даже в такой ситуации стоит помнить о необходимости подзарядки.

Аккумуляторная батарея заряжается под воздействием импульсного либо постоянного тока. Во втором случае сила тока должна быть равна 0,1 от емкости батареи. Например, при емкости АКБ в 55 А/ч, то сила зарядного тока должна соответствовать 5,5 А. Если этот параметр будет ниже, то предотвратить активацию процессов сульфатации не удастся .

Также следует помнить, что существует достаточно надежный способ десульфатации. Для этого необходимо предварительно разрядить батарею до 3−5 вольт с помощью высоких токов небольшой длительности, например, включая стартер. После этого следует провести полную зарядку аккумулятора током в 1 А.

Эту процедуру необходимо повторять от 7 до 10 раз.

Аналогичный принцип работы имеют специальные десульфатирующие зарядные устройства. На протяжении нескольких миллисекунд на клеммы батареи подается импульсный ток с обратной полярностью, а затем более длительный импульс прямой полярности.

Также следует помнить, что во время зарядки АКБ нельзя допускать достижения ею максимального заряда. Это может привести к увеличению концентрации и плотности раствора электролита, что произведет разрушающее воздействие на пластины. В заводских ЗУ для предотвращения этого явления используется электронная система контроля и автоматического отключения.

Самодельные зарядные устройства

Существует несколько вариантов изготовления самодельного ЗУ.

Причем некоторые из них собираются буквально за несколько минут из подручных материалов.

Простейший прибор

Он может пригодиться в ситуации, когда утром батарея оказалась полностью разряженной, а необходимо срочно отправиться в дорогу. Для зарядки АКБ в такой ситуации потребуется отыскать источник постоянного тока в 12−25 В и сопротивление.

Сегодня у многих людей есть ноутбуки, ЗУ которого выдает ток силой в 2 А при напряжении в 19 В. Этого хватит для решения поставленной задачи. Внешний контакт разъема блока питания имеет отрицательный заряд, а внутренний — положительный.

Сопротивлением, в свою очередь, может стать простая лампа, используемая для освещения салона машины.

В теории возможно применять и более сильную лампу, например, от габаритов, но в такой ситуации риск перегрузки БП окажется довольно высоким. В результате можно собрать простейшую схему зарядки аккумулятора.

Если ноутбука нет, можно заранее приобрести выпрямительный диод с показателем обратного напряжения от 1000 В и силой тока не менее трех ампер. Благодаря небольшим габаритам, этот полупроводниковый прибор всегда может находиться в автомобиле. В качестве сопротивления в этом случае может быть использована обычная лампа накаливания на 220 В.

Из блока питания ПК

Сложность изготавливаемого зарядного устройства своими руками следует выбирать в соответствии с имеющимися навыками в области электротехники. Найти блок питания от ПК не составит большого труда. Он, кроме питания в 5 В, имеет шину с напряжение в 12 вольт при силе тока в два ампера. Этих параметров достаточно для создания несложного зарядного устройства.

Так как напряжения в 12 В будет недостаточно для полноценной зарядки АКБ и его необходимо увеличить. Для этого потребуется найти сопротивление около 1 кОм и соединить его со вторым сопротивлением, подключенным к восьмиконтактной микросхеме. Эта простая схема должна быть присоединена к вторичной цепи компьютерного блока питания.

Подбирая номинал второго сопротивления можно довести выходное напряжение до 13,5 В, которого будет достаточно для зарядки аккумуляторной батареи. Затем потребуется лишь подключить собранное устройство к клеммам АКБ. В отличие от первого ЗУ, в этом случае необходимости в использовании дополнительного сопротивления нет.

Трансформаторное устройство

Такие ЗУ являются наиболее распространенными и безопасными. Собрать их несколько сложнее, но при наличии определенного опыта в работе с электротехникой разобраться со схемой можно. Наиболее простое устройство этого типа состоит из следующих элементов:

  • Трансформатор сетевой.
  • Ограничительная нагрузка.
  • Выпрямительный диодный мост.

Так как через нагрузку проходит большой ток, она сильно нагревается. Чаще всего для ограничения силы тока зарядки используются конденсаторы, подключенные к первичной цепи трансформатора. Если точно подобрать емкости конденсаторов, то можно и вовсе обойтись без трансформатора, но такое устройство будет более опасным для человека. Диодный мост можно собрать самостоятельно либо использовать готовый от вышедшего из строя генератора. Более сложные устройства основаны на микросхемах или микропроцессорах и собрать их сможет хорошо подготовленный человек.

Техника безопасности

Заводские зарядные устройства являются безопасными в эксплуатации. С этой точки зрения, самодельные приборы не столь надежны и это их основной недостаток. При работе с ними следует придерживаться нескольких правил безопасности:

  • Батарею и ЗУ необходимо расположить на несгораемой поверхности.
  • При работе с простейшим устройством следует использовать средства индивидуальной защиты — резиновый коврик и изолирующие перчатки.
  • Когда ЗУ используется впервые, необходимо внимательно следить за ходом зарядки.
  • Основными параметрами, которые следует контролировать, являются ток, напряжение на клеммах батареи, температура корпуса ЗУ и АКБ.
  • Если самодельное зарядное устройство планируется оставлять на ночь, необходимо предусмотреть систему аварийного отключения от сети.

Правильно собранное самодельное зарядное устройство может стать хорошей альтернативой заводскому прибору. Кроме этого, используя подручные материалы и детали от вышедших из строя устройств, можно неплохо сэкономить.

Зарядное устройство для автомобильного аккумулятора своими руками

     

    1. Что вам понадобится

    • Дрель
    • Паяльник
    • Ножовка по металлу
    • Клей момент
    • Трансформатор
    • Корпус блока питания компьютера
    • Медный провод
    • Отвертка
    • Предохранитель
    • Диодный мост
    • Радиатор от микропроцессора компьютера
    • Термопаста
    • Вольтметр
    • Электролитический конденсатор
    • Зажимы типа крокодил
    • Электровилка
    • Плотный картон

     

    2. Наглядная схема

    Чтобы вам было легче представить, как сделать зарядное устройство для автомобильного аккумулятора своими руками, предлагаем примерную схему. Это лишь один из множества вариантов, который мы взяли за основу для данной статьи. Есть более простые устройства, но зачастую они не способны выдавать стабильный ток. А сложные в сборке схемы могут лишь запутать тех, кто впервые столкнулся с подобной задачей. Способ, который мы опишем в этой статье, будет интересен как увлеченным радиотехникам, так и тем, кто имеет небольшой опыт в сборке электротехнических приборов. Причем создание такого зарядного устройства для автомобильного аккумулятора своими руками не потребует больших вложений. Необходимые детали для него вы можете найти дома, на балконе, в гараже или у знакомых.

    На рисунке ниже представлена схема, по которой будет собрано устройство. Основными элементами являются: 1 – понижающий трансформатор, 2 – диодный мост, 3 – вентилятор для охлаждения трансформатора и диодного моста, 4 – вольтметр, 5 – электролитический конденсатор, 6 – предохранитель.

    Рис. Примерная схема зарядного устройства

     

    3. Описание сборки

    Подготовка трансформатора

    За основу берем высоковольтный трансформатор и превращаем его в понижающий. Ведь зарядное устройство должно выдавать ток с меньшим значением, чем в электросети. Необязательно покупать трансформатор в магазине. Можно извлечь его из старого лампового телевизора, если таковой имеется у вас в гараже либо на даче. Вполне подойдет трансформатор от микроволновой печи. Обычно его мощность не превышает 1 кВт. Проверьте его работоспособность прежде, чем встраивать в схему. Подсоедините его к электросети на 220 В – при подаче тока на клеммы должен послышаться небольшой гул. Это свидетельствует о том, что прибор исправен и может быть использован в составе рабочей электрической схемы.

    Первым делом необходимо удалить высоковольтную верхнюю обмотку. Ножовкой по металлу спилите ее. При этом действуйте аккуратно, чтобы не задеть первичную обмотку, которая должна остаться нетронутой. Остатки верхней обмотки нужно извлечь из корпуса. Сначала их можно высверлить дрелью, а затем выбить с помощью тупого предмета, например, долота с молотком. В итоге должно получиться два пустых отверстия – окошечка.

    Намотка провода

    Полученные окошки в корпусе трансформатора станут основой для намотки провода. Сечение провода выбирайте в зависимости от того, насколько емкие аккумуляторы предстоит заряжать. Чем больше емкость и вольтаж, тем толще должен быть провод.

    Подсказка: количество витков провода рассчитывается по сечению провода. Например, для проводов в 1,5 – 3 мм с частотой 50 Гц на напряжение в 1 В необходимо 5 витков. Чтобы собрать зарядное устройство на 18 В, придется сделать 90 витков.

    Намотку провода осуществляют следующим образом. В окошко с левой стороны вставляется провод с запасом примерно в 10 см в лицевой части трансформатора. Оставшийся длинный конец продевается во второе окошко сзади корпуса и выполняется намотка по часовой стрелке. Делать это нужно аккуратно, виток к витку.

    Установка элементов охлаждения

    В качестве корпуса для зарядного устройства будет использоваться корпус блока питания компьютера. Установленный на нем вентилятор нужно снять, открутив крепления отверткой, и перевернуть задом наперед. Воздух должен задуваться внутрь для охлаждения трансформатора и диодного моста.

    Отдельно стоит сказать про диодный мост. Сила тока его может составлять от 10 до 50 А. Для аккумуляторов небольшой емкости можно использовать элемент на 10 А. В этом случае ему не требуется дополнительного охлаждения – его можно установить непосредственно на стенку корпуса блока с внутренней стороны. Другое дело, если вы используете диодный мост с большим значением. Тогда, чтобы он не сгорел от перегрева в процессе работы зарядного устройства, нужно установить его на радиатор. Подойдет радиатор от компьютера, который охлаждает микропроцессор. Из-за значительных габаритов эта деталь вместе с диодным мостом не уместятся внутри корпуса, поэтому нужно закрепить их снаружи. Крепление диодного моста к радиатору осуществляется с использованием термопасты.

    Сборка всех деталей в корпусе

    Все элементы соединяются согласно схеме зарядного устройства. В разрез одного из проводов от трансформатора устанавливается предохранитель на 15 А. Можно взять автомобильный предохранитель. Он защищает от короткого замыкания, так как на этом участке напряжение высокое. Затем в схему включаются диодный мост,  вентилятор охлаждения, вольтметр, конденсатор. Можно использовать конденсатор на 16 или 25 В с емкостью от 3000 до 10 000 мкФ. Чем больше емкость, тем ровнее будет ток на выходе собранного устройства. Для подключения к клеммам аккумулятора необходимо присоединить провода с зажимами типа крокодил.

    Когда все элементы схемы соединены между собой, их фиксируют на корпусе. Особое внимание уделите установке трансформатора. Вырежьте под его размер две картонки. Одну положите на дно корпуса, под трансформатор, вторую разместите сверху. Это поможет снизить вибрации и гудение во время работы. Крышку блока можно посадить на клей, чтобы она тоже не дребезжала.

    Тестирование

    Чтобы проверить собранное зарядное устройство для автомобильного аккумулятора своими руками, не спешите сразу подключать его к батарее. Попробуйте на галогенной лампочке. Подведите к ней крокодилы и подайте ток – она должна гореть без затухания и сильного мерцания. Так вы убедитесь в качестве подаваемого тока и можете попробовать зарядить аккумулятор. Окончание заряда можно контролировать по показаниям вольтметра.

    Стоит сказать, что самодельное зарядное устройство вполне способно восполнить заряд севшего аккумулятора и годится для частных нужд. Чтобы прибор удовлетворял требованиям безопасности и эффективности, надо быть точно уверенным в своих действиях и в правильности подобранных деталей. Если вы не хотите рисковать, то сборку можете провести в качестве эксперимента, а  зарядное устройство лучше купить в магазине.

     

    4. Видео по теме

     

    5. Интересные статьи

    Как зарядить автомобильный аккумулятор в домашних условиях?

    Как сделать самодельный металлоискатель своими руками

    Виды и особенности автомобильных домкратов

    Как заменить масло в двигателе: пошаговая инструкция и советы автомобилисту

    Как выбрать автомобильный компрессор?

    как сделать своими руками, схема

    Автор Владимир Остапенко На чтение 18 мин. Просмотров 8.9k. Опубликовано


    Во время эксплуатации автомобиля нередко возникает ситуация, когда аккумуляторную батарею (АКБ) приходится снимать и заряжать стационарным зарядным устройством (ЗУ). Его, конечно же, можно купить, а возможно сделать своими руками. В этой статье рассмотрим несколько обычных зарядных устройств для автомобильного аккумулятора, которые несложно повторить даже начинающему радиотехнику.

    Требования к зарядке АКБ

    Прежде чем сделать зарядное устройство для автомобильного аккумулятора своими руками, рассмотрим .

    1. Зарядный ток не должен превышать рекомендованный производителем батареи. Если зарядный ток не указан (неизвестен), то он не должен превышать 10 % от принятой ёмкости аккумулятора.
    2. В конце процесса зарядки ток желательно уменьшить, чтобы .
    3. Недопустима перезарядка АКБ. Как только напряжение на клеммах заряжаемой батареи достигнет значения 13,8 ± 0,15 В, зарядку стоит прекратить. Это будет существенно для AGM и гелевых батарей.
    4. При пропадании сетевого напряжения не должна происходить разрядка батареи через зарядное устройство. Глубокий разряд для свинцовой АКБ губителен.

    Исходя из вышесказанного, определяем требования к зарядному устройству:

    1. Должно обеспечивать регулировку зарядного тока.
    2. Потребуется наличие встроенных измерительных приборов – амперметра и вольтметра, — позволяющих контролировать ток заряда и .
    3. Обязательно наличие цепей, предотвращающих разряд АКБ через зарядное устройство при пропадании сетевого напряжения.

    Полезно. Первый и второй пункты могут выполняться оператором вручную, но существуют и автоматические ЗУ, самостоятельно регулирующие ток во время зарядки и отключающие батарею, как только она полностью зарядится. Третий пункт должен выполняться независимо от сложности схемы ЗУ.

    Как сделать самодельное зарядное устройство для АКБ

    А теперь рассмотрим несколько схем разной сложности, которые отвечают вышеперечисленным требованиям к ЗУ и не особо сложны для повторения.

    Простой «зарядник» с гасящими конденсаторами

    Это несложное устройство позволяет заряжать аккумуляторы ёмкостью до 100 А·ч произвольным током, который регулируется в интервале 1–10 А с шагом 1 А, что будет достаточно для качественного обслуживания любого автомобильного аккумулятора.

      

    Схема простого зарядного устройства с гасящими конденсаторами

    В ЗУ встроен понижающий трансформатор Тр1, сетевое напряжение на него подаётся через блок гасящих конденсаторов С1-С4. Каждый из конденсаторов имеет собственный переключатель, включающий его в цепь питания трансформатора. Ёмкости конденсаторов подстроены таким образом, что переключатели S1–S4 имеют вес 1, 2, 4, 8 А соответственно.

    Комбинируя положения переключателей, можно выбрать произвольный ток зарядки в диапазоне 1-10 А, с шагом 1 А. К примеру, если необходимо выставить ток 6 А, то нужно замкнуть переключатели S3 и S2. Ток в 5 А обеспечит включение переключателей S3 и S1.

    Пониженное трансформатором напряжение подаётся на диодный мост, выпрямляется и выходит на клеммы Х3 и Х4, к которым подключается заряжаемая батарея. Ток зарядки измеряют амперметром PA1, а вольтметр PV1 выдаёт напряжение на клеммах батареи. Цепей защиты от разряда батареи через зарядное устройство в случае пропадания сетевого напряжения в этой схеме ЗУ нет, поскольку их роль исполняет диодный мост.

    О деталях. Конденсаторы С1–С4 подбирают неполярные типа МБГО, МБГП, МБЧГ, КБГ-МН, МБМ или МБГЧ с рабочим напряжением не менее 300 В для МБГЧ и КБГ-МН и не более 600 В для приборов остальных типов.

    Категорически недопустимо использование электролитических конденсаторов, даже если они рассчитаны на соответствующее напряжение. «Электролит» — полярный прибор, работающий только в цепях постоянного тока. При подключении в цепь переменного тока он просто взорвётся.

    Вместо диодов Д242 можно применять любые другие, выдерживающие ток не менее 10 А и обратное напряжение не ниже 25 В. Подходят, например, диоды Д214 или германиевые Д305. При любых условиях их нужно поставить на радиаторы. Трансформатор Тр1 обычный сетевой с выходным напряжением 24–26 В, способный обеспечить хотя бы полуторный зарядный ток. Приборы PA1 и PV2 — амперметр с пределом измерения 10–15 А и вольтметр на напряжение 20 В соответственно.

    Указанное зарядное устройство можно применять и для зарядки батарей с другим напряжением (например, 6-вольтовых), но здесь необходимо учитывать, что «вес» тумблеров S1–S4 будет другой, и придётся определяться по амперметру.

    Прибор для зарядки и тренировки аккумулятора

    Это самодельное зарядное устройство заряжает аккумулятор пульсирующим током, причём в паузах между импульсами зарядки батарея разряжается током порядка 0,5 А. Это позволяет не только качественно зарядить батарею, но и успешно , осуществляя тренировку АКБ. Зарядный ток в импульсе может достигать 10 А, регулировка тока плавная.

    Электрическая схема зарядного устройства для тренировки батарей

    Сетевое напряжение понижается трансформатором Т1 до величины 25 В и подаётся на однополупериодный выпрямитель, собранный на диодах D1 и D2, включенных параллельно для увеличения мощности. Регулировка тока происходит при помощи ключа, встроенного на транзисторе VТ1, включенного в минусовую цепь зарядки. Степень открытия транзистора, а значит, и зарядный ток — регулируется с помощью переменного резистора R1. Питание резистор получает от простейшего параметрического стабилизатора R1, D3.

    По окончании каждого положительного полупериода диоды запираются, и до начала следующего — батарея разряжается через балластный резистор R4. Ток разрядки фиксированный и, как было сказано выше, составляет 500 мА. Зарядный ток контролируется при помощи амперметра PA1, а напряжение на батарее вольтметром PV1.

    Мнение эксперта

    Алексей Бартош

    Специалист по ремонту, обслуживанию электрооборудования и промышленной электроники.

    Задать вопрос

    Контролируя зарядный ток, необходимо учитывать, что его часть (около 10 %) течёт через балластный резистор R4. Кроме того, прибор показывает усреднённое значение, тогда как зарядка батареи производится только в половину периода. Поэтому, к примеру, при импульсном зарядном токе в 5 А амперметр с учётом потерь на R4 покажет 1,8 А.

    Для предупреждения глубокого разряда батареи через балластный резистор при пропадании сетевого напряжения введён узел защиты, собранный на реле К1. Пока зарядное устройство работает, его обмотка находится под напряжением, а контакты К1.1 и К1.2 (включены параллельно для увеличения мощности) подключают батарею к ЗУ.  При пропадании сетевого напряжения реле отпускает, и его контакты отключают заряжаемый аккумулятор.

    О деталях. На месте Т1 может работать любой силовой трансформатор, выдающий 22–25 В при токе в 5 А. Диоды D1 D2 — любые десятиамперные, выдерживающие обратное напряжение не ниже 40 В. Они установлены на общий радиатор. VТ1 — транзистор серии КТ827 с любой буквой. Его тоже нужно поставить на радиатор. Если корпус прибора металлический, то в качестве радиатора может выступать и он.

    Стабилитрон D3 — любой маломощный с напряжением стабилизации 7,5–12 В. Резисторы R3 и R4 — С5-16МВ и ПЭВ-15 соответственно. В качестве К1 используется реле переменного тока РПУ-0 на напряжение срабатывания 24 В. Каждая группа его контактов выдерживает ток до 6 А.

     Полезно. При необходимости можно применять реле постоянного тока, но тогда его обмотку придётся подключить к схеме через выпрямительный мост.

    Зарядное устройство для АКБ с ШИМ-регулировкой тока

    Эта схема способна обеспечить зарядный ток до 6 А и выделяется небольшими габаритами, поскольку использует широтно-импульсный метод регулирования (ШИМ), а управляющий током зарядки транзистор работает в ключевом режиме, что существенно снижает рассеиваемую на нём мощность.

    Электросхема зарядного устройства с ШИМ

    Задающий генератор блока регулировки тока собран на элементах DD1.1, DD1.2 микросхемы К561ЛА7, элементы DD1.3, DD1.4 — буферные. Частота генератора — 13 кГц, скважность плавно регулируется с помощью переменного резистора R3. С генератора сигнал поступает на регулирующий элемент — мощный полевой транзистор VT1, работающий в ключевом режиме.

    В зависимости от положения движка переменного резистора отношение времени открытия транзистора к его закрытому состоянию меняется, а значит, изменяется и средний ток зарядки батареи, который можно контролировать при помощи амперметра PA1.

    Питание микросхема получает от простейшего параметрического стабилизатора, собранного на элементах R1, VD4. Сам стабилизатор подключен к выпрямительному мосту, обеспечивающему напряжение зарядки. Из соображений компактности, диодный мост собран на полупроводниках Шоттки с незначительным падением напряжения. Лампа EL1 — индикаторная.

    О деталях. Вторичная обмотка трансформатора Т1 должна обеспечивать ток 6–7 А при напряжении 16–20 В. Если использовать трансформатор, у вторичной обмотки которого есть отвод от середины, то выпрямитель можно собрать по схеме, приведённой ниже, сократив число выпрямительных диодов вдвое.

    Двухполупериодный выпрямитель на двух диодах

    В мостовом выпрямителе используется диодная сборка VD1.1 VD1.2 и два отдельных диода VD3 и VD4. Все элементы установлены на общий радиатор 160х45 мм через слюдяные прокладки. При необходимости диоды Шоттки можно заменить обычными выпрямительными, но габариты устройства при этом увеличатся, поскольку понадобится радиатор большего размера. При замене необходимо учитывать, что диоды должны выдерживать ток 10 А и обратное напряжение не менее 40 В.

    Если зарядный ток не будет превышать 5 А, то транзистор VT1 устанавливать на радиатор не нужно. При большем токе понадобится радиатор — медная или алюминиевая пластина размером 50х50х1 мм.

    В качестве амперметра используется индикатор записи магнитофона М476/2, включенный параллельно с шунтом. Шунт представляет собой кусок медного обмоточного провода ПЭВ-2 1,5, намотанный на оправку диаметром 8 мм. Количество витков — 16, сопротивление — около 0,1 Ом.

    Зарядное устройство с фазоимпульсной регулировкой

    Это мощное зарядное устройство славится тем, что собрано из доступных советских деталей, которые наверняка найдутся у любого радиотехника. Прибор обеспечивает плавную регулировку тока в пределах 0 … 10 А и пригоден для зарядки аккумуляторов ёмкостью до 100 А·ч.

    Схема зарядного устройства для автомобильных аккумуляторов с фазоимпульсной регулировкой

    Это обычный тиристорный регулятор напряжения с фазоимпульсным управлением. Роль элемента управления выполняет аналог однопереходного транзистора, сделанный на двух биполярных приборах VT1 и VT2. Изменяя сопротивление переменного резистора R1, мы меняем время задержки открывания тиристора относительно начала полупериода, а значит, и ток зарядки, который контролируется по показаниям амперметра PA1. Для измерения напряжения на клеммах батареи служит прибор PV1. Питается устройство от мостового выпрямителя VD1–VD4, подключенного к понижающему трансформатору Т1.

    О деталях. Вместо заданного на схеме тиристора КУ202В можно использовать КУ202 с буквами Г–Е, а также более мощные Т-160 и Т-250. Диоды VD1–VD4 — обычные выпрямительные с обратным напряжением не менее 40 В и выдерживающие ток 10 А. Подойдут, например, Д242, Д243, Д245, КД203, КД210, КД213 и т. п.

    Тиристор и выпрямительные диоды необходимо установить на радиаторы с эффективной площадью рассеяния 100 см2 каждый. Если используется мощный тиристор серии «Т», то на радиатор его ставить не нужно. В качестве Т1 можно использовать любой силовой трансформатор, обеспечивающий ток 10 А при напряжении 18–22 В. Отлично подойдёт, к примеру ТН-61, имеющий три обмотки по 6,3 В при токе 8 А. Этого вполне достаточно для зарядки батареи ёмкостью до 80 А·ч.

    Транзистор КТ361А можно заменить на КТ361б – КТ361Е, КТ502В, КТ3107А, КТ501Ж – КТ501К, КТ502Г. На месте VT2 может работать КТ315А-КТ315Д, КТ3102А, КТ312Б. Вместо диода КД 105Д подойдут КД105Г, КД105В, Д226 (с любым индексом). Измерительный прибор PA1 — амперметр с пределом измерения 10–15 А или микроамперметр с соответствующим шунтом. PV1 — вольтметр с пределом измерения 15–20 В.

    Зарядное устройство с регулировкой по высокому напряжению (по первичной обмотке)

    Это устройство отличается от предыдущих тем, что тиристорный регулятор зарядного тока расположен в цепи первичной обмотки силового трансформатора. При помощи этого ЗУ можно заряжать батареи током до 6 А. Поскольку коммутируемые токи по напряжению 220 В будут намного меньше, чем по низкому, радиатор регулирующему элементу не нужен. Кроме того, амперметр PA1 не имеет громоздкого шунта, а значит, устройство получается несколько компактнее.

    Зарядное устройство с регулировкой по высокому напряжению

    В этой схеме используется всё тот же фазоимпульсный метод. Поскольку тиристор не может работать в цепях переменного тока, он включен через диодный мост  VD1–VD4. Управляет тиристором однопереходный транзистор VT1. Задержка его открывания от начала полупериода зависит от положения движка переменного резистора R5. Именно им и регулируется зарядный ток.

    В момент открытия тиристор шунтирует диодный мост, и всё сетевое напряжение прикладывается к первичной обмотке T1. При этом со вторичной обмотки снимается напряжение определённой величины (0–20 В, в зависимости от положения движка переменного резистора R5) и, пройдя через выпрямитель VD5–VD8, поступает на клеммы заряжаемого аккумулятора. Узел измерения тока собран на микроамперметре, зашунтированном резистором R1. Резистор R2 служит для калибровки прибора. Лампа HL1 — индикаторная.

    Мнение эксперта

    Алексей Бартош

    Специалист по ремонту, обслуживанию электрооборудования и промышленной электроники.

    Задать вопрос

    Вольтметра это зарядное устройство не имеет, поэтому контролировать напряжение на клеммах заряжаемого аккумулятора придётся внешним вольтметром, к примеру, тестером. Впрочем, ничего не мешает просто встроить вольтметр в прибор.

    О деталях. На месте VD1–VD4 могут работать диоды Д231–Д234, Д245, Д247 с любым буквенным индексом, КД202 с буквами К, М, Р. Радиаторы им, как и тиристору, не нужны. Вместо германиевых Д305 в низковольтном выпрямителе можно использовать Д231–Д233 без буквенного индекса или с буквой А. Их придётся установить на радиаторы с площадью поверхности 100 см2.

    Конденсатор С1 должен иметь по возможности меньший ТКЕ, иначе при прогреве устройства зарядный ток «поплывёт». Подойдут конденсаторы типа К73-17 или К73-24. Трансформатор Т1 должен обеспечивать на вторичной обмотке напряжение 18–22 В при токе нагрузки 6–7 А. Микроамперметр (PA1) можно взять любой с током полного отклонения 100 мкА.

    Важно! Все элементы зарядного устройства, включенные в цепь первичной обмотки, во время работы прибора находятся под опасным для жизни напряжением. Перед любой перепайкой или изменением схемы обязательно отключаем конструкцию от сети, а на шток переменного резистора R5 надеваем ручку из изоляционного материала.

    Автоматическое зарядное устройство из драйвера для светодиодных лент

    Драйвер для питания светодиодных лент, если он достаточно мощный (не менее 100 Вт), — готовое зарядное устройство для автомобильного аккумулятора. Единственное, что нас не устраивает — это выходное напряжение. Драйвер выдаёт 12 вольт, конечное напряжение зарядки свинцово-кислотного аккумулятора — 13,8 В. Если учесть падение напряжения на зарядных проводах, то нам нужно заставить выдавать блок питания 14,0–14,4 вольта (зависит от толщины проводов). Этим и займёмся.

    Для эксперимента возьмём драйвер мощностью 110 Вт — он сможет развить зарядный ток в 7,6 А — более чем достаточно для любого автомобильного аккумулятора. Взглянем на типовую схему драйвера китайского производства:

    Типовая схема драйвера для светодиодной ленты китайского производства

    Нас интересует подстроечный резистор P1 (справа вверху на блоке «Выпрямитель 12 В»). Подключаем к выходу устройства вольтметр, само устройство подключаем к сети. Небольшой отвёрткой вращаем ползунок подстроечного резистора (на плате он обозначен «VR»), пытаясь поднять напряжение до 14,0–14,4 В. Скорее всего, сделать это не удастся — слишком велика разница. На нашем блоке напряжение удалось вытянуть лишь до 13,26 В.

    Диапазона регулировки подстроечного резистора нам не хватило

    Тут есть два варианта:

    1. Заменить подстроечный резистор другим, большего номинала.
    2. Заменить постоянный резистор R37, стоящий в делителе, другим, меньшего номинала.

    Воспользуемся вторым вариантом. Но тут возникает непредвиденная проблема — нумерация элементов на нашем блоке и на схеме не совпадают. «Пляшем» от подстроечного резистора, разбираясь в дорожках, и выясняем, что на нашей плате этот резистор обозначен «R30».

    Нас интересует резистор R30

    На схеме он имеет номинал 2,2 кОм, но мы рисковать не будем, поскольку схема явно не родная — выпаиваем его и измеряем сопротивление омметром. Результат — 5 кОм.

    Номинал нашего R30 составил 5 кОм

    Берём переменный резистор того же номинала, впаиваем на место R30, выводим движок на максимальное сопротивление и включаем блок питания в сеть. Постепенно уменьшая сопротивление, устанавливаем необходимую величину выходного напряжения.

    Напряжение на выходе составляет 14,5 В

    Здесь оно несколько выше нужного, но позже мы подгоним его более точно штатным подстроечным резистором VR.

    Важно! Движок переменного резистора крутим очень осторожно, стараясь не поднимать напряжение выше 15 В, поскольку сглаживающие конденсаторы в фильтре драйвера рассчитаны на максимальное напряжение в 16 В.

    Выпаиваем переменный резистор, измеряем его сопротивление.

    Нам нужен постоянный резистор сопротивлением 4,5 кОм

    Такого номинала не существует, устанавливаем ближайший — 4,6 кОм. Снова включаем устройство, штатным подстроечным резистором VR выставляем выходное напряжение 14,0– 14,4 В. Собираем блок — и у нас в руках готовое зарядное устройство со стабилизированным выходным напряжением.

    Особая прелесть такого решения состоит в том, что устройство является автоматическим и никогда не перезарядит батарею, даже если мы забудем вовремя снять её с зарядки. Идеальное решение для AGM и гелевых батарей, которые очень боятся перезаряда.

    Зарядное устройство из блока питания ПК

    Это устройство тоже является автоматическим — оно, как и предыдущая конструкция, не даст перезарядить аккумуляторную батарею, поскольку работает в режиме стабилизации напряжения и по окончании зарядки ток через аккумулятор падает до 0. Доработке будет подвергаться блок питания персонального компьютера, собранный на ШИМ-микросхеме TL494 или её аналогах, список которых приведён в табличке ниже.

    Аналоги микросхемы TL494 

    Прибор

    Описание

    Прибор

    Описание

    GL494Зарубежный полный аналогM5T494PЗарубежный полный аналог
    IR9494NMB3759
    MB3759UA494PC
    NE5561UC494
    UPC494UC494CN
    XR494UPC494C
    ECG1729MB3759
    IR3M02UA494DM
    IR9494IR9494
    MB3759MB3759
    UPC494C1114ЕУ3Отечественный полный аналог
    UA494DC1114ЕУ4
    ECG17291114ЕУЗ
    HA11794К1114ЕУ3
    IR3M02КР1114ЕУ4

    Итак, разбираем блок, вынимаем из корпуса плату. Из платы выпаиваем все питающие провода, кроме зеленого. Он служит для запуска БП материнской платой. Нам подобное управление не нужно, а потому этот провод мы просто припаиваем к площадкам, к которым раньше припаивались чёрные провода (иначе говоря — замыкаем на минус), чтобы блок питания запускался сразу после подачи на него 220 В.

    Зелёный провод управления припаиваем к минусовой шине питания

    Теперь к площадкам, к которым подпаивались жёлтые и чёрные провода, припаиваем два толстых провода с «крокодилами» для подключения к аккумулятору. Тот, который подпаивается вместо жёлтых, будет плюсовым, а вместо чёрных — минусовым.

    Теперь нужно заставить БП выдавать вместо 12 В нужные для зарядки свинцового аккумулятора 13,8–14 В (14,4 с учётом падения напряжения на проводах под нагрузкой). Делаем это точно так же, как и в предыдущей конструкции, — заменой резистора на прибор другого номинала.

    Находим первый вывод микросхемы TL494 или её аналога, ориентируясь по ключу-выемке на корпусе прибора. На фото ниже первый вывод помечен красной, а сам ключ — зелёными стрелками.

    Нумерация выводов ведётся от ключа против часовой стрелки

    Переворачиваем плату и по дорожке, ведущей от этого вывода, определяем, что к нему подпаяны три резистора. Нас интересует тот, который вторым выводом подключен к шине +12 В. На фото ниже он помечен красным лаком.

    Нас интересует этот резистор

    Номинал этого резистора нужно изменить (увеличить), но на сколько? Выпаиваем его и замеряем сопротивление. В нашем случае сопротивление составило 38 кОм. Берём переменный резистор примерно вчетверо большего номинала, выставляем движком сопротивление 38 кОм и впаиваем его вместо того, который выпаяли. Плавно увеличивая сопротивление, выставляем выходное напряжение на значение 14,4 В.

    Установка выходного напряжения при помощи переменного резистора

    Важно! Для каждого блока питания номинал этого резистора будет разный, т. к. схемы и детали в блоках разные, но алгоритм изменения напряжения один для всех. При поднятии напряжения свыше 15 В, может быть сорвана генерация ШИМ. После этого блок придётся перезагружать, предварительно уменьшив сопротивление переменного резистора.

    Выпаиваем переменный резистор, измеряем его сопротивление, подбираем постоянный ближайшего номинала, впаиваем. Проверяем наше зарядное устройство, нагрузив его лампочкой от автомобильной фары и контролируя выходное напряжение под нагрузкой. Оно должно остаться практически тем же — 14 В.

    Под нагрузкой выходное напряжение «просело» на несколько десятых — это нормально

    Как заряжать аккумулятор от самодельного устройства

    Зарядка аккумулятора самодельным устройством ничем не отличается от зарядки промышленным прибором.

    1. Выводим регулятор тока в «0».
    2. Подключаем заряжаемый аккумулятор к клеммам ЗУ.
    3. Подаём питание на ЗУ.
    4. Устанавливаем необходимый ток зарядки.
    5. При напряжении 13,2–13,4 В на клеммах батареи уменьшаем ток вдвое.
    6. При напряжении на клеммах 13,8 В выводим регулятор тока в «0», выключаем питание ЗУ, отключаем аккумулятор.

    Мнение эксперта

    Алексей Бартош

    Специалист по ремонту, обслуживанию электрооборудования и промышленной электроники.

    Задать вопрос

    В двух последних конструкциях контролировать напряжение на батарее не нужно — как только аккумулятор зарядится, ток зарядки станет равным нулю.

    Вот в принципе и всё о самодельных зарядных устройствах. Прочитав этот материал, мы без труда сможем подобрать наиболее подходящую схему зарядного устройства и повторить её.


    Как сделать автомобильное зарядное устройство своими руками

    Далеко не у каждого автовладельца имеется в наличии зарядное устройство для автомобильного аккумулятора. Многие не считают нужным приобретать такой агрегат, считая, что он им не понадобится. Однако, как показывает практика, хотя бы раз в жизни каждый водитель оказывался в ситуации, когда необходимо ехать, а аккумулятор вышел из строя.

    Необязательно приобретать новое заводское зарядное устройство, его можно самостоятельно выполнить из, например, старых электроприборов. Существует множество вариантов создания своими руками автомобильных зарядных устройств, но большая их часть обладает существенными недостатками.

    Автомобильное зарядное устройство

    Аккумулятор можно подзарядить даже при помощи мощного диода и обогревателя. Подобный аккумулятор подключается через обогреватель и диод к сети, после чего по системе идёт ток в 4,5 ампера. При расходе около 10–15 киловатт через 10–15 часов аккумулятор будет заряжен полностью. Но КПД такого изобретения довольно мал (меньше 1%), так что приемлемой считать систему вряд ли можно.

    Основанные на транзисторах устройства дают много тепла, но и тут не всё гладко. Они боятся ошибок при сочетании полярности и коротких замыканий. Подобная схема не даёт требуемой стабильности тока, она издаёт сильный шум и радиопомехи. Правда, наличие ферритового кольца компенсирует некоторые отрицательные стороны устройства.

    Также часто встречаются самодельные варианты создания аккумуляторов из компьютерных блоков питания. Однако для доработки такой схемы желательна радиотехническая квалификация. Важно следовать чёткой инструкции. Есть вероятность, что из-за различий в электрических схемах блоков такой агрегат ни к чему хорошему не приведёт.

    На видео — зарядное устройство из БП компьютера:

    У многих интерес вызывает так называемая конденсаторная схема. Её КПД очень высок, тепло при работе не выделяется, соединение даёт стабильный электрический ток, который не зависит от текущего заряда и колебаний подачи тока; не страшны этой схеме и замыкания. Но при отсутствии соединения с аккумулятором на конденсаторах резко вырастает напряжение, как следствие, зарядка прекращается. Если вы в силах решить вопрос с постоянством контакта, то, в принципе, это просто идеальный вариант.

    Но есть и ещё один способ зарядки аккумулятора автомобиля, основанный на балластных конденсаторах. При кажущейся сложности схему воссоздать довольно легко.

    Зарядное устройство из блока питания

    Создание зарядного устройства в корпусе от миллиамперметра

    Все составляющие цепи устройства легко можно разместить в корпусе от миллиамперметра. Из указанного прибора нужно убрать содержимое, оставив только стрелочный компонент. Затем выполнить монтаж навесным способом.

    Сам корпус миллиамперметра выглядит как рамки прямоугольной формы, что соединены между собой уголками, в которых есть небольшие отверстия. Именно к ним легко прикреплять необходимые детали.

    Так выглядит электрическая схема маломощного зарядного устройства

    Трансформатор закрепляется с помощью четырёх винтов на 2-миллиметровой пластине из алюминия. В свою очередь, эта пластина крепится к уголкам снизу.

    Сверху к уголкам также закреплена пластинка, но уже из стеклотекстолита той же толщины. На ней закреплены реле и конденсаторы. К тому же к этой паре уголков прикручивается печатная плата со спаянной схемой автоуправления зарядкой. Всего конденсаторов должно быть установлено 14, потому что для создания определённого номинала конденсатора следует соединять устройства параллельно друг другу. Реле и конденсаторы подсоединяются через разъём к остальным частям схемы. Это позволяет облегчить доступ при сборке к прочим элементам.

    На видео — универсальное зарядное устройство своими руками:

    Сзади, на внешней стороне, устанавливается ребристый радиатор из алюминия, для того чтобы охлаждать силовые диоды. Здесь же прикрепляется предохранитель и вилка для организации постоянной подачи напряжения.

    Диоды закрепляются к радиатору при помощи прижимных планок внутри корпуса. Специально для этого сзади в стенке необходимо сделать отверстие прямоугольной формы. Такое решение поможет свести к минимуму выделение тепла в корпусе. Подводящие провода и выводы диодов распаиваются на планку из стеклотекстолита.

    Шунт устройства — отрезок провода (1 см). Его концы нужно запаять в полоски из меди. Один конец припаивается к клемме плюса, а ко второй — проводник, который идёт от контактов реле.

    Шкала милливольтметра может не подходить под необходимые измерения, именно поэтому вам, скорее всего, будет нужно создать свой вариант шкалы. Лучше сделать это на плотной бумаге и приклеить к уже существующей.

    С одной стороны прикрепляются крокодилы, а, соответственно, со второй — разрезные наконечники. Сечение проводов должно быть не меньше 1 квадратного миллиметра. К сети зарядка подключается при помощи шнура.

    На видео — сборка зарядного устройства:

    Детали для устройства

    А сейчас поговорим о том, какие именно детали используются, для того чтобы собрать автомобильное зарядное устройство своими руками:

    • Трансформатор используется типа ТН61-22, обмотки соединяются последовательным образом. Коэффициент полезного действия зарядки не меньше 0,8, сила тока — не больше 6 ампер, поэтому прекрасно подойдёт трансформатор с мощностью, равной 150 ваттам. Обмотка трансформатора обязана обеспечивать напряжение до 20 вольт при силе тока до 8 ампер. При отсутствии готовой модели можно взять любой трансформатор необходимой мощности и намотать вторичную обработку. Для расчётов количества витков применяйте специально предназначенный для этого калькулятор, который можно найти на сайтах в интернете.
    • Подходят конденсаторы из ряда МБГЧ, предназначенные для тока напряжением не меньше 350 вольт. Если конденсатор поддерживает работу с переменным током, то он подойдёт для создания зарядного устройства.
    • Диоды подойдут абсолютно любые, но они должны быть рассчитаны на ток до 10 ампер.
    • Операционным усилителем может быть выбран аналог AN6551 — КР1005УД1. Именно такую модель раньше вставляли в магнитофоны ВМ-12. Он очень хорош тем, что не требует при работе двухполярного питания, а также цепей коррекции. КР1005УД1 функционирует при колебаниях напряжения более 7 В. В общем, эту модель можно заменить любой аналогичной. К примеру, это могут быть LM158, LM358 и LM258, но тогда придётся менять рисунок печатной платы.
    • Для измерения напряжения и тока подойдёт любая электромагнитная головка, например М24. Если показатели напряжения вас не интересуют, то просто установите амперметр, который рассчитан на постоянный ток. В обратном случае напряжение контролируется тестером или мультиметром.

    На видео — создание автомобильного зарядного устройства:

    Проверка и настройка

    В том случае, когда все элементы исправны и сборка произошла без ошибок, то схема должна заработать сразу. И автовладельцу необходимо только лишь установить порог напряжения с помощью резистора. Когда зарядка достигнет этого прибора, произойдёт переключение на режим малого тока.

    Регулировка осуществляется в момент зарядки. Но лучше, наверно, подстраховать себя: настроить и проверить схемы защиты и регулирования. Из измерительных приборов для этого понадобятся мультиметр или тестер, рассчитанный на работу с постоянным напряжением.

    Как заряжать собранным устройством

    Существуют определённые правила, которые необходимо соблюдать при использовании самодельного автомобильного зарядного устройства.

    Важно ещё до начала зарядки снять аккумулятор, очистить его от пыли и грязи. Затем протереть раствором соды, для того чтобы удалить кислотные остатки. Если частички кислоты на аккумуляторе есть, то сода начнёт пениться.

    Пробки для заливки кислот в аккумуляторе необходимо выкрутить. Это делается для того, чтобы газы, образующиеся в аккумуляторе, имели возможность выходить. Затем следует проверить количество самого электролита: если уровень меньше оптимального, долейте дистиллированной воды.

    После этого переключателем выставьте определённое показание тока заряда, подключите собранное устройство, учитывая при этом полярность. Соответственно, плюсовой вывод зарядки следует подсоединить к плюсовому выводу аккумулятора. Нахождение переключателя в нижнем положении приведёт стрелку устройства на показатель текущего напряжения. Вольтметр начинает в это же время показывать напряжение тока.

    Зарядка аккумулятора самодельным устройством

    Если ваш аккумулятор обладает ёмкостью 50 А·ч, на данный момент он заряжен на 50%, то сначала следует установить ток на отметку 25 ампер, постепенно уменьшая её до нуля. На подобном принципе функционируют автоматические устройства для зарядки. Они помогают зарядить на 100% аккумулятор автомобиля. Правда, такие устройства очень дорого стоят. При своевременной зарядке такой недешёвый аппарат не нужен.

    Подводя итоги, можно сказать, что, используя даже б/у детали от старых приборов, можно собрать вполне приличное зарядное устройство для автомобильного аккумулятора. Если нет способностей выполнить это самостоятельно, то всегда можно найти такого умельца в каждом гаражном кооперативе. И уж наверняка обойдётся это существенно дешевле, чем купить новое заводское устройство.

    Самодельное импульсное зарядное устройство для автомобильного аккумулятора

    Недавно под заказ попросили сделать высоковольтный генератор. Сейчас некоторые спросят себя — какое отношение имеет высоковольтный генератор к зарядному устройству? Должен заметить, что один из самых простых импульсных зарядников можно построить на базе приведенной схемы и в качестве наглядной демонстрации я решил собрать

    инвертор на макете и изучить все основные достоинства и недостатки данного инвертора.

    Автоэлектрика. Мощное импульсное зарядное устройство для АКБ.

    Ранее, я уже выкладывал статью про зарядное устройство на основе полумостового инвертора на драйвере IR2153, в этой статье тот же драйвер, только чуть иная схематика, без использования емкостей полумоста, так, как с ними было много вопросов и многие просили схему без конденсаторов.

    Но без конденсаторов и тут не обошлось, он нужен для сглаживания помех и бросков после сетевого выпрямителя, емкость я подобрал 220 мкФ, но можно и меньше — от 47 мкФ, напряжение 450 Вольт в моем случае, но можно ограничиться 330-400 Вольт.

    Диодный мост можно собрать из любых выпрямительных диодов с током не менее 2А (желательно в районе 4-6А и более) и с обратным напряжением не менее 400 Вольт, в моем случае был использован готовый диодный мост из компьютерного блока питания, обратное напряжение 600 Вольт при токе 6 Ампер — то, что надо!

    Напомню, что это самый простой вариант подключения микросхемы и самый простой ИБП от сети 220 Вольт, который может вообще существовать, если хотите долговечное зарядное устройство, то схему придется доработать.

    Для обеспечения нужных параметров питания микросхемы использован резистор 45-55кОм с мощностью 2 ватт, если таковых нет, то можно подключить последовательно 2-3 резисторов, конечное сопротивление которых, будет в пределе указанного.

    Диод от 1-ой к 8-ой ножке микросхемы должен быть с током не менее 1 А и с обратным напряжением не ниже 300 Вольт, в моем случае был использован быстрый диод на 1000 Вольт 3 Ампер, но он не критичен, можно использовать диоды HER107, HER207, HER307, FR207 (на крайняк), UF4007 и т. п.

    Полевые транзисторы нужны высоковольтные, типа IRF840 или IRF740. Трансформатор был взят готовый, от компьютерного блока питания. На входе питания стоят два пленочных конденсатора до и после дросселя, дроссель взят готовый, он имеет две одинаковые обмотки (независимые друг от друга) каждая по 15 витков провода 0,7мм.

    Термистор, предохранитель, резистор на входе — тут только для защиты схемы от резких бросков напряжения, не советую их убрать, но схема и без них прекрасно работает. Выпрямляется выходное напряжение мощным сдвоенным диодом, который тоже можно найти в компьютерном блоке питания.

    На выходах трансформатора образуется разное напряжение (3,3/5/12Вольт). Шину 12 Вольт найти очень легко, обычно это два вывода с одного края, нужную обмотку найти легко, если использовать галогенную лампу на 12 Вольт, судя по свечению можно сделать вывод о напряжении.

    Готовый блок можно дополнить регулятором мощности и защитой от перегруза и короткого замыкания и получить полноценное зарядное устройство для автомобильного аккумулятора, напомню, что ток с шины 12 Вольт доходит до 8-12 Ампер, зависит от конкретного типа трансформатора.

    ВНИМАНИЕ! Данный блок питания не имеет встроенную защиту от короткого замыкания и перегруза на выходе, поэтому при замыкании выходных проводов блок скорее всего выйдет из строя, во избежания дымовых эффектов очень советую ознакомиться с материалом http://xn—-7sbbil6bsrpx.xn--p1ai/blok-zashhity-zaryadnyx-ustrojstv.html, неплохо бы и регулировку напряжения блока, тема про регулятор мощности описана тут http://xn—-7sbbil6bsrpx.xn--p1ai/prostoj-regulyator-moshhnosti-dlya-zaryadnogo-ustrojstva.html

    Всего доброго и до новых встреч на страницах сайта.

    Разделы сайта

    DirectAdvert NEWS

    Друзья сайта

    ActionTeaser NEWS

    Статистика

    Импульсное ЗУ для автомобильных аккумуляторов с током до 7 Ампер.

    Импульсное зарядное устройство_схема_описание

    Для радиолюбителей, отдающих предпочтение импульсной технике, предлагаем ознакомиться с принципиальной схемой малогабаритного зарядного устройства, способного заряжать аккумуляторы током до 7 Ампер, при этом ток потребления устройством от сети 220 Вольт не превышает 2 Ампер, и остается работоспособным при снижении питающего напряжения примерно до 170 Вольт.

    Принципиальная схема зарядного устройства изображена на следующем рисунке:

    Установив необходимый ток заряда, данным устройством можно заряжать не только автомобильные, но и другие аккумуляторы, например, блоков бесперебойного питания, аккумуляторы электроинструмента, и т.д. Зарядный ток контролируется с помощью встроенного амперметра, в роли которого можно использовать стрелочный индикатор от магнитофона с соответствующим шунтом, и шкалой, отградуированной в амперах.

    Вернемся к принципиальной схеме. Входная часть – высоковольтная. На входе стоит выпрямитель D1, рассчитанный на ток до 10 Ампер, и пара сглаживающих емкостей С1 и С2. Выпрямленное напряжение получается порядка 290 Вольт. На транзисторах Т1 и Т2 собран блокинг-генератор, на выходе которого стоит импульсный трансформатор. Обмотка III является нагрузкой генератора, обмотки II и IV обеспечивают поочередное открывание транзисторов генератора, частота которого лежит в пределах 25…30 кГц. Диоды D2 и D3 обеспечивают защиту транзисторных ключей от пробоя обратным напряжением, это связано с индуктивными выбросами, которые могут возникать в импульсном трансформаторе. R2 и R3 стоят как ограничители тока, протекающего через ключи, а резисторы R4 и R5 – ограничители токов баз Т1 и Т2 соответственно.

    Далее по схеме идет низковольтная часть. С обмоток импульсного трансформатора V и VI
    Переменное напряжение поступает на выпрямитель D4, фильтруется емкостью С4 и поступает на ШИМ-регулятор (транзисторы Т3 и Т4). Переменный резистор изменяет скважность импульсов, которыми управляется полевой транзистор Т5. От номиналов емкостей С6 и С7 зависит частота генерации широтно-импульсного модулятора, она должна лежать в диапазоне 5…7 кГц.

    Лампа HL1 – визуальный контроль работы зарядного устройства.
    На низковольтном выпрямителе получается порядка 18 Вольт, поэтому последовательно с вентилятором, рассчитанным на напряжение 12 Вольт, включен резистор номиналом 10 Ом.

    Чуть не забыли написать про кнопку S1. С ее помощью производится запуск генератора, и, соответственно пуск зарядного устройства в работу. Эта кнопка не фиксированная, запуск осуществляется коротким нажатием, то есть импульсом. Если на выходе будет короткое замыкание, генерация сорвется, и блокинг-генератор прекратит работу. После устранения КЗ пусковая кнопка нажимается заново.

    Основой для намотки служит ферритовое кольцо, наружный диаметр которого 30 мм. Параметры намотки следующие:

    ● Обмотка III – 140 витков, провод ПЭЛ-0,31 мм, мотается первой, далее слой фторопластовой ленты.

    ● Обмотки I, II, IV – по 2 витка каждая, можно использовать жилы от телефонного кабеля.

    ● Обмотки V, VI – по 18 витков каждая, диаметр провода 3,6 мм. Для удобства в намотке скрутите жгут из 20-ти жил провода диаметром 0,18 мм, намотать будет гораздо легче. Для скручивания жгута используйте шуруповерт.

    В результате должно получиться примерно так:

    Импульсный трансформатор для зарядного устройства

    Ключевые транзисторы Т1 и Т2 – биполярные, типа MJE13007, устанавливаются на небольшие радиаторы. Можно заменить на EN13007, EN13009.
    Транзисторы Т3 и Т4 – биполярные, 2SC1815. Можно заменить на КТ315.
    Транзистор T5 – полевой, типа N302AP, тоже можно установить на небольшой радиатор.
    Диодный мост D1 – KBP208G, или аналогичный на ток 10 Ампер.
    Диоды D2 и D3 – 1N4007, можно заменить на отечественные КД226Д.
    Резисторы R1, R4, R5, R7, R8, R9, R10, R11, R12 – типа МЛТ-0,25.
    Резисторы R2, R3, R6 – типа МЛТ-0,5.
    Конденсаторы С1 и С2 – 33 мкФ, на напряжение не ниже 250 Вольт.
    Конденсатор С3 – 2200 пФ на 400 Вольт.

    Ниже на снимках показан внешний вид печатной платы:

    Печатная плата зарядного устройства

    Печатная плата зарядного устройства_сторона элементов

    . Печатную плату в формате LAY и принципиальную схему можно скачать одним файлом по прямой ссылке с нашего сайта. Размер файла архива – 0,045 Mb.

    Далее на снимках показана собранная печатная плата (вид со стороны элементов, и вид со стороны дорожек):

    Импульсное зарядное устройство в сборе

    . Будьте аккуратны при отладке зарядного устройства, помните, что входные цепи находятся под напряжением питающей сети, ведь правила электробезопасности еще никто не отменял.

    Порой аккумулятор в автомобиле разряжается очень быстро. В итоге приходится использовать различные приборы для того, чтобы завести машину. На сегодняшний день большой популярностью пользуются именно импульсные зарядные устройства. Основными их производителями принято считать компании «Сонар» и «Бош».

    Однако некоторые люди не могут себе позволить купить указанные приборы, поскольку они дорого стоят. В такой ситуации можно попробовать самостоятельно собрать модель. Для того чтобы разобраться в импульсных зарядках, необходимо взглянуть на стандартную схему устройства.

    Схема обычной зарядной модели

    Схемы импульсных зарядных устройств для автомобильных аккумуляторов включают в себя трансформатор с магнитопроводом, а также транзисторы. Для настройки напряжения используются регуляторы, которые подсоединены к модуляторам. Также схема импульсного зарядного устройства включает в себя специальные триггеры. Основной их задачей является повышение стабильности напряжения. Для подключения прибора на зарядке имеются зажимы. Непосредственно само электричество подается через кабель.

    Устройство на 6 В: схема и инструкция

    Сделать на 6 В импульсное зарядное устройство своими руками довольно просто. С этой целью для трансформатора сооружается небольшая платформа. Также необходимо заранее заготовить изоляторы. Непосредственно трансформатор часто применяют силового типа. Проводимость тока у него в среднем равняется 6 мк. Еще важно отметить, что система способна справляться с повышенным отрицательным сопротивлением. Осцилляторы используются импульсного типа.

    Для нормальной работы прибора также потребуется линейный тетрод. Подбирать его следует с обкладкой. Некоторые эксперты настоятельно советуют использовать фильтры. Таким образом, можно стабилизировать напряжение, когда перегрузки в сети превышают отметку в 20 В. По эксплуатации инструкция импульсного зарядного устройства очень простая. Для подключения устройства потребуются зажимы. При этом вилку следует воткнуть в розетку.

    Как сделать зарядное на 10 В?

    Схемы импульсных зарядных устройств для автомобильных аккумуляторов включают в себя понижающие трансформаторы. Начинать сборку модели следует с поиска качественного трансформатора. В данном случае потребуется мощный магнитопровод. Еще в схемы импульсных зарядных устройств для аккумуляторов входят изоляторы. Многие эксперты устанавливают регуляторы с модуляторами. Таким образом, показатель входного напряжения можно уменьшать или увеличивать. В данном случае многое зависит от мощности автомобильного аккумулятора.

    Непосредственно тетроды применяются только с обкладками. Резисторы используются расширительного типа. У некоторых модификаций встречаются триггеры. Данные элементы позволяют справляться с коротковолновыми помехами, которые возникают в сети с переменным током при резком повышении уровня тактовой частоты.

    Отзывы о моделях на 12 В

    Импульсные зарядные устройства для аккумуляторов на 12 В в наше время пользуются большим спросом. Если верить отзывам экспертов, то для сборки модели используются понижающие трансформаторы. Осциллятор в данном случае потребуется с высокой проводимостью тока. Также важно отметить, что для моделей подходят только подстроечные триггеры.

    Тетроды, в свою очередь, используются линейного типа. Параметр допустимой перегрузки в устройствах не превышает 15 Вт. Показатель номинального ток составляет в среднем 4 А. Магнитопроводы у моделей устанавливаются за трансформаторами. Специально для них необходимо подобрать качественные изоляторы. Для подключения зарядного прибора понадобятся зажимы. Если верить экспертам, то следует учесть, что самостоятельно их изготовить будет достаточно сложно.

    Однофазные модификации

    Сделать однофазное импульсное зарядное устройство своими руками можно на базе понижающего трансформатора. Для их сборки также используются регуляторы. Модуляторы в данном случае подойдут только коммутируемого типа. Непосредственно триггеры устанавливаются с изоляторами. Некоторые эксперты рекомендуют также использовать резиновые подкладки.

    Тетроды подбираются с высокой пропускной способностью. Регуляторы устанавливаются над модулятором. Резисторов в данном случае потребуется три. Номинальное напряжение они обязаны выдерживать на отметке в 10 В. Для подключения приора понадобятся металлические фиксаторы.

    Двухфазные устройства

    Двухфазное автоматическое импульсное зарядное устройство собирается довольно просто. Однако в этой ситуации не обойтись без силового трансформатора. Также для сборки используются только расширительные резисторы. Показатель входного напряжения в сети, как правило, не превышает 12 В. Тиристоры для моделей используются с изоляторами. Непосредственно модулятор устанавливается на подкладку. Регулятор в данном случае подойдет поворотного типа. Для преодоления помех применяются магнитопроводы. Подключаются устройства данного типа через провод. От сети 220 В они работать тоже могут. Для подсоединения к аккумуляторам необходимы зажимы.

    Отзывы о трехфазной модификации

    Трехфазное импульсное зарядное устройство отзывы от экспертов имеет хорошие. Преимущество моделей заключается в том, что они способны выдерживать больше перегрузки. Магнитопроводы в данном случае устанавливаются с проводимостью на уровне 6 мк. Для стабилизации выходного напряжения применяются линейные резисторы. В некоторых случаях устанавливаются и кодовые аналоги. Однако срок службы у них не большой.

    Также важно отметить, что предельное напряжение в устройствах следует регулировать при помощи модуляторов. Устанавливаются они сразу за трансформаторами. Для преодоления магнитных помех применяются подстроечные триггеры. Многие эксперты для сборки зарядных устройств рекомендуют устанавливать фильтры. Указанные элементы помогут значительно уменьшить параметр отрицательного сопротивления в цепи.

    Применение импульсного трансформатора РР20

    Автомобильные зарядные устройства (импульсные) с данными трансформаторами встречаются часто. В первую очередь следует отметить, что показатель номинального напряжения у них не превышает 10 В. Параметр рабочего тока равняется в среднем 3 А. Осцилляторы для сборки устройства часто используются с не большой проводимостью.

    Магнитопроводы в данном случае устанавливаются на подкладках. Расширительные резисторы используются часто. Для регулировки номинального напряжения стандартно применяют модуляторы. У некоторых модификаций используются триггерные блоки. Для нормальной работы системы также не обойтись без линейных тетродов. Зажимы для прибора целесообразнее покупать отдельно. Сделать их самостоятельно очень сложно.

    Использование трансформаторов РР22

    Зарядные устройства (импульсные) с этими трансформаторами являются довольно распространенными. Для того чтобы самостоятельно собрать модификацию, потребуется найти качественный осциллятор. Также трансформатор будет работать только с магнитопроводом на 3 мк. В данном случае больше всего подходят резисторы расширительного типа. Однако в первую очередь важно заняться установкой регулятора. С этой целью нужно использовать коммутируемый модулятор, который устанавливается на подкладке.

    Далее важно заняться полупроводниковым транзистором. Для того чтобы избежать коротких замыканий, многие эксперты рекомендуют использовать стабилизаторы. На рынке представлено множество однополюсных модификаций. В данном случае номинальное напряжение будет находиться в районе 5 В. Показатель рабочего тока составляет примерно 4 А.

    Зарядное оборудование с трансформатором РР30

    Для того чтобы собрать зарядные устройства (импульсные) с указанными трансформаторами, потребуется мощный магнитопровод. При этом осциллятор целесообразнее применять на 2 мк. Параметр отрицательного сопротивления в цепи обязан быть выше 3 Ом. Устанавливается магнитопровод рядом с трансформатором. Для подсоединения модулятора потребуется два контакта. Также важно отметить, что регуляторы целесообразнее использовать поворотного типа.

    Многие эксперты рекомендуют резисторы устанавливать на обкладке. Все это позволит значительно сократить случаи коротких замыканий. Для стабилизации напряжения стандартно применяются фильтры. Триггерные блоки с данными трансфокаторами чаще всего используются подстроечного типа. Однако в наше время их найти сложно. Чаще всего попадаются именно оперативные аналоги. Номинальное напряжение в цепи они способны выдерживать в 15 В.

    Применение разделительных трансформаторов

    Разделительные трансформаторы очень редко встречаются. Основная их проблема кроется в малой проводимости тока. Также важно отметить, что они способны работать только на кодовых резисторах, которые дорого стоят в магазине. Однако преимущества у моделей есть. В первую очередь это касается повышенного номинального напряжения в цепи. Таким образом, зарядка автомобильного аккумулятора много времени не отнимет.

    Также нужно отметить, что эти трансформаторы являются компактными, и в машине не займут много места. Тиристоры в данном случае применяются лишь волнового типа. Устанавливаются они чаще всего на обкладках. Для припайки модулятора применяется изолятор. Транзисторы многие эксперты настоятельно рекомендуют использовать полупроводникового типа. В магазине они представлены с различной проводимостью. В итоге параметр отрицательного сопротивления в цепи не должен превышать 8 Ом. Для подсоединения прибора к автомобильным аккумуляторам используются зажимы.

    Модель с трансформатором КУ2

    Трансформаторы данной серии имеют большие габариты и способны работать лишь с магнитопроводами на 4 мк. Все это говорит о том, что для нормальной эксплуатации прибора потребуются триггеры. При помощи данных устройств получится стабилизировать выходное напряжение. Также возле трансформаторов потребуется установить два фильтра. Некоторые эксперты настоятельно рекомендуют использовать стабилитроны. Однако данные устройства способны работать только при не больших перегрузках в сети.

    Резисторы в данном случае можно смело применять расширительного типа. Для регулировки выходного напряжения используются коммутируемые модуляторы. Непосредственно регуляторы устанавливать следует через дроссель. Если верить отзывам экспертов, то трансформатор для безопасного использования следует располагать на подкладке. В данном случае потребуются два изолятора. Транзистора чаще всего применяются полупроводникового типа.

    Зарядное оборудование с трансформатором КУ5

    Зарядные устройства (импульсные) с указанными трансформаторами не пользуются большим спросом. В первую очередь это вызвано низким выходным напряжением. Таким образом, зарядка автомобильного аккумулятора занимает много времени. Однако если использовать мощный осциллятор, то ситуацию можно немного поправить. Также многие эксперты рекомендуют устанавливать расширительные резисторы.

    В данном случае модулятор подойдет только коммутируемого типа. У некоторых моделей встречаются однополюсные стабилитроны. Однако в этой ситуации трансформатор может не выдержать чрезмерной нагрузки. Триггер часто применятся подстроечного типа. Для борьбы с коротковолновыми помехами не обойтись без фильтров. Чтобы подсоединить устройство к автомобильному аккумулятору используют зажимы.

    Модель со сдвоенным дросселем

    Зарядные устройства (импульсные) с двоенными дросселями позволяют использовать более двух модуляторов. Таким образом, можно устанавливать цифровые регуляторы напряжения. В данном случае трансформаторы чаще всего подбираются понижающего типа. Непосредственно осцилляторы используют на 3 мк. Резисторы многие эксперты рекомендуют устанавливать расширительного типа. В свою очередь кодовые аналоги не смогут долго прослужить. Тиристорные блоки применяются как волнового, так и оперативного типа.

    Подведение итогов

    Учитывая все вышесказанное, следует отметить, что наиболее востребованными считают трехфазные модификации. Для того чтобы их собрать, необходимо уметь пользоваться паяльной лампой. Детали для устройства нужно приобретать в специализированных магазинах. Также следует помнить о технике безопасности при подключении прибора к сети.

    Зарядные устройства » Автосхемы, схемы для авто, своими руками

    Неоднократно мы с вами беседовали о всевозможных зарядных устройствах для автомобильного аккумуляторам на импульсной основе, сегодня тоже не исключение. А рассмотрим мы конструкцию ИИП, который может иметь выходную мощность 350-600 ватт,но и это не предел, поскольку мощность при желании можно поднять до 1300-1500 ватт, следовательно, на такой основе можно соорудить пуско-зарядное устройство, ведь при напряжении 12-14 Вольт с блока 1500 ватт можно снять до 120 Ампер тока! ну разумеется

    Конструкция привлекла мое внимание еще месяц назад, когда на одном из сайтов на глаза попалась статейка. Схема регулятора мощности показалось довольно простой, поэтому решил использовать эту схему для своей конструкции, которая особа проста и не требует никакой наладки. Схема предназначена для зарядки мощных кислотных аккумуляторов с емкостью 40-100А/ч, реализована по импульсной основе. Основной, силовой частью нашего зарядного устройства является сетевой импульсный блок питания с мощностью 105

    Совсем недавно решил изготовить несколько зарядных устройств для автомобильного аккумуляторы, который собирался продавать на местном рынке. В наличии имелись довольно красивые промышленные корпуса, стоило лишь изготовить хорошую начинку и все дела. Но тут столкнулся с рядами проблем, начиная от блока питания, заканчивая узлом управления выходного напряжения. Пошел и купил старый добрый электронный трансформатор типа ташибра (китайский бренд) на 105 ватт и начал переделку.

    Довольно простое зарядное устройство автоматического типа можно реализовать на микросхеме LM317, которая из себя представляет линейный стабилизатор напряжения с регулируемым выходным напряжением. Микросхема может также работать в качестве стабилизатора тока.

    Качественное зарядное устройство для авто аккумулятора, на рынке можно приобрести за 50$, а сегодня расскажу самый простой способ изготовления такого зарядного устройства с минимальными расходами денежных средств, оно простое и изготовить сможет даже начинающий радиолюбитель.

    Конструкцию простейшего зарядного устройства для автомобильных аккумуляторов можно реализовать за пол часа с минимальными затратами, ниже будет описан процесс сборки такого зарядного устройства.

    В статье рассмотрено простое по схемному решению зарядное устройство (ЗУ) для аккумуляторов различного класса, предназначенных для питания электрических сетей автомобилей, мотоциклов, фонарей и т.д. ЗУ простое в эксплуатации, не требует корректировок в процессе заряда аккумулятора, не боится коротких замыканий, несложно и дешево в изготовлении.

    Недавно в интернете попалась схема мощного зарядного устройство для автомобильных аккумуляторов с током до 20А. На самом деле это мощный регулируемый блок питания собранный всего на двух транзисторах. Основное достоинство схемы — минимальное количество используемых компонентов, но сами компоненты довольно недешевые, речь идет о транзисторах.

    Естественно у каждого в машине есть зарядки в прикуриватель для всякого рода девайсов навигатор, телефон и т.д. Прикуриватель естественно не без размерный и тем более он один (вернее гнездо прикуривателя), а если еще и человек курящий то сам прикуриватель надо вынуть куда то положить, а если уж надо что-то подключить в зарядку то тогда использование прикуривателя по прямому назначению просто невозможно, можно решить подключение всякого рода тройников с гнездом как прикуриватель, но это как то

    Недавно в голову пришла идея собрать автомобильное зарядное устройство на базе дешевых китайских БП с ценой 5-10$. В магазинах электроники сейчас можно найти такие блоки, которые предназначены для запитки светодиодных лент. Поскольку такие ленты питаются от 12 Вольт, следовательно выходное напряжение блока питания тоже в пределах 12Вольт

    Представляю конструкцию несложного DC-DC преобразователя, который позволит вам зарядить мобильный телефон, планшетный компьютер или любое другое портативное устройство от автомобильной бортовой сети 12 Вольт. Сердцем схемы является специализированная микросхема 34063api разработанная специально для таких целей.

    После статьи зарядного устройство из электронного трансформатора на мой электронный адрес поступило много писем, с просьбой пояснить и рассказать — как умощнить схему электронного трансформатора, и чтобы не писать каждому пользователю отдельно, решил напечатать эту статью, где я расскажу о тех основных узлах, которые нужно будет переделать для увеличения выходной мощности электронного трансформатора.

    Мне пришлось совсем недавно самостоятельно соорудить зарядное устройство для автомобильного аккумулятора с током 3 – 4 ампер. Конечно мудрить, что то не желания, не времени не было и в первую очередь вспомнилась мне схема стабилизатора зарядного тока. По этой схеме очень просто и надежно сделать зарядное устройство.

    Очень часто возникает проблема с зарядкой автомобильного аккумулятора, при этом зарядное устройство под рукой не имеется, как же быть в этом случае ? Сегодня я решил напечатать эту статью, где намерен пояснить все известные способы зарядки автомобильного аккумулятора, интересно правда ?

    Довольно простой и качественный импульсный источник питания можно собрать с применением микросхемы IR2153. Микросхема из себя представляет самотактируемый полумостовой драйвер, которая довольно часто используется в промышленных балластах для лам дневного освящения.

    DIY кабель для зарядки электромобилей |

    Ранее я писал о кабелях для зарядки электромобилей и технологии зарядных станций. Это продолжение, связанное с этим. Этот пост содержит ссылки на проекты DIY, связанные с кабелями для зарядки электромобилей. Эти кабели довольно дорогие, поэтому некоторые домашние мастера пытались сделать свои собственные версии. Некоторые даже претензии удались по этому проекту. Но отнеситесь ко всем инструкциям с недоверием, так как мы имеем дело с опасными напряжениями, большими токами и дорогими устройствами.Совершение любых ошибок может потенциально привести к поражению электрическим током, вызвать возгорание (в кабельной, автомобильной или настенной проводке) или разрушить дорогую электронику внутри вашего электромобиля.

    Вот несколько видеороликов по поиску и устранению неисправностей и ремонту коммерческих кабелей:

    Устранение неисправностей зарядного устройства для электромобилей

    Ремонт поврежденного кабеля зарядки электромобиля.

    Замена штекера J1772 уровня 1 EVSE

    Вот несколько интересных проектов зарядки электромобилей своими руками:

    Разработка лучшего портативного зарядного устройства для электромобилей (зарядное устройство для бабушек)

    Очень простой DIY EVSE на базе Arduino / Зарядная станция

    Самодельное зарядное устройство для электромобилей 2-го уровня краткий обзор

    Разработка лучшего портативного зарядного устройства для электромобилей (зарядное устройство для бабушек)

    open-evse — это открытое оборудование и программное обеспечение для зарядки электромобилей, соответствующих стандарту J1772.EVSE обещает обеспечить соединение, связь и устройства безопасности между электромобилем и стеной.

    Что такое OpenEVSE

    Сборка OpenEVSE и мини-обзор

    Сборка набора OpenEVSE 3

    # 24 — Зарядное устройство OpenEVSE уровня 2 для электромобилей своими руками — часть 1

    # 25 — Зарядное устройство OpenEVSE уровня 2 для электромобилей своими руками — часть 2

    Зарядное устройство для электромобилей уровня 2, часть 1 — стандарт J1772

    Зарядное устройство для электромобилей, уровень 2, часть 2 — Проектирование оборудования

    Зарядное устройство для электромобилей, уровень 2, часть 3 — Программирование и тестирование

    3 комментария

    1. Томи Энгдал говорит:

      Новые полупроводники из карбида кремния повышают эффективность электромобилей
      https: // hackaday. ru / 2019/11/25 / новый-карбид-кремний-полупроводники-принести-е-повышение эффективности /

      Ответить
    2. Томи Энгдал говорит:

      Системы хранения энергии увеличивают инфраструктуру быстрой зарядки электромобилей (часть 1)
      В связи с резким ростом рынка электромобилей в ближайшем будущем возникают вопросы относительно того, как электросеть сможет справиться с нагрузкой. В первой части этой серии из двух частей рассматриваются ключи к созданию инфраструктуры с использованием систем хранения энергии.
      https://www.electronicdesign.com/markets/automotive/whitepaper/21131625/energy-storage-systems-boost-ev-fastcharger-infrastructure-part-1

      Системы накопления энергии повышают инфраструктуру быстрой зарядки электромобилей (часть 2)
      Во второй части этой серии из двух частей мы проанализируем критические компоненты зарядной станции и способы решения конкретных проблем, возникающих при проектировании.
      https://www.electronicdesign.com/markets/automotive/whitepaper/21133277/energy-storage-systems-boost-ev-fastcharger-infrastructure-part-2?utm_source=EG+ED+Auto+Electronics&utm_medium=email&utm_200ecompaign=C = 7211D2691390C9R & rdx.identity% 5Bpull% 5D = omeda% 7C7211D2691390C9R & oly_enc_id = 7211D2691390C9R

      Ответить
    3. Томи Энгдал говорит:

      Raspberry Pi EVSE Hat
      Используйте Raspberry Pi для создания зарядной станции для электромобилей
      https://hackaday.io/project/167595-raspberry-pi-evse-hat

      Ответить

    Оставить комментарий Отменить ответ

    Ваш электронный адрес не будет опубликован. Обязательные поля отмечены *

    Имя*

    Эл. адрес*

    Интернет сайт

    Защита от спама: сумма 10 + 1? *

    Комментарий

    Руководство

    DIY поможет вам построить собственную зарядную станцию ​​для электромобилей

    За последний год станции для зарядки электромобилей перестали быть продуктами с завышенной ценой и грабительскими затратами на установку и превратились в предметы, которые вы можете забрать в местном хозяйственном магазине и установить самостоятельно.

    Но если поездка в местный Лоус и установка готового устройства кажется немного простым или все же слишком дорогим, теперь есть третий вариант: самостоятельная сборка.

    Благодаря упорной работе группы электроники подкованной электрических вентиляторов автомобиля, проект Open EVSE использует популярный Hobbyist Arduino микроконтроллера в качестве основы своей самодельного, портативной электрического автомобиль зарядной станции.

    Более того, технически опытный любитель мог бы построить его за небольшую часть стоимости серийного устройства.

    Но прежде чем мы расскажем вам больше, мы обязаны предоставить вам следующий отказ от ответственности:

    Создание собственного зарядного устройства для электромобилей требует значительных знаний в области электроники — от умения обращаться с паяльником до возможности устранения неисправностей в электронных схемах. Вдобавок ко всему, если что-то пойдет не так с вашим самодельным устройством, вы обязаны исправить любой ущерб, вызванный неисправностью.

    Используя готовую материнскую плату Arduino, пустую макетную плату и легкодоступные электронные компоненты, Open EVSE предлагает портативное решение для зарядки для всех, у кого есть подходящая розетка на 230 В.

    Откройте зарядную станцию ​​для Arduino от EVSE (Creative Commons 3.0)

    При загрузке с открытым исходным кодом, который сопровождает проект, Open EVSE может не только согласовывать правильные требования к питанию с автомобилем, к которому он подключен, но также поставляется с протоколами безопасности, предназначенными для отключения питания, если что-то пойдет не так.

    Если мысль о зарядке очень дорогого электромобиля от самодельной зарядной станции не вызывает у вас страха, Instructables.com есть очень подробное руководство по созданию модуля и его тестированию.

    Для тех, кто еще более технически подкован, домашняя страница проекта должна сообщить вам все, что вам нужно знать.

    Обычно мы не освещаем проекты самогона в GreenCarReports, так почему именно этот?

    Все просто. Даже если вы не являетесь поклонником самодельных зарядных станций, команда разработчиков Open EVSE доказала, что можно сделать недорогую зарядную станцию ​​для электромобилей.

    Это дает коммерческим поставщикам EVSE один вариант: делать более дешевые зарядные станции меньшего размера.

    В конечном итоге выгода получают как те, кто хочет делать свои зарядные станции, так и те, кто хочет их покупать.

    Это должно быть хорошо.

    +++++++++++

    Следите за сообщениями GreenCarReports в Facebook и Twitter.

    Как сделать собственное автомобильное зарядное устройство USB для любого IPod или других устройств, которые заряжаются через USB: 10 шагов (с изображениями)

    Примечание: я тестировал это только на iPod Nano, но я предполагаю, что он будет работать для любого iPod, который заряжается через USB, или любое устройство, которое заряжается через USB, которое использует для зарядки источник 5 В.

    Основная идея здесь — заряжать мой Nano через USB в машине. Полная стоимость проекта для меня была Free-99. У меня была вся запасная проводка и кабели, потому что я никогда не выбрасываю ничего электронного. Однако я построил еще один за оттенок менее 8 долларов. Я имею в виду, что это не страшно для автомобильного зарядного устройства для iPod и других заряжаемых через USB устройств. Плюс это удовольствие для DIY.

    Обычно ваш порт USB обеспечивает питание 5 В по одному проводу в 4-контактном USB-кабеле. Нормальное рабочее напряжение для большинства USB-устройств составляет 4.75 В и 5,25 В. Хорошо, мы это понимаем, но как теперь получить 5 В от источника 12 В (ваша машина)? Я наткнулся на эту идею случайно, буквально споткнувшись о сетевое зарядное устройство для своего Nextel-Motorola i870 и заметил, что адаптер имеет выход 5 В для зарядки телефона. Итак, я вышел на улицу к своей машине, чтобы проверить выходное напряжение автомобильного зарядного устройства, оно не было маркировано, поэтому я отправился в Wal-Mart, который находится через дорогу, за мультитестером. При тестировании выходного напряжения автомобильного зарядного устройства я был удивлен, увидев, что выходное напряжение было 5.15v вполне в пределах досягаемости для зарядки iPod.

    Прочтите эту последнюю часть еще раз, я проверил напряжение на вольтметре. Я также протестировал несколько других автомобильных адаптеров, которые у меня были, и их выходное напряжение сильно варьировалось от 3 до 14 В. Так что, если вы не уверены в выходном напряжении, не просто сращивайте и рассчитывайте получить правильное напряжение для вашего iPod. (Кстати, я также сконструировал альтернативу Firewire-проводу из вышеупомянутого автомобильного зарядного устройства на 14 В, и скоро появится руководство по этому поводу).Убедившись, что напряжение находится в пределах нормального рабочего диапазона USB, я использовал удлинительный кабель USB, чтобы получить USB-штекер. Следующие шаги логически следуют логике: соедините конец USB-разъема с проводами автомобильного адаптера, запломбируйте, проверьте напряжение, подключите. Направление и некоторые рисунки следуют.

    Создание зарядного устройства для нашего DIY EV

    Теперь, когда у меня установлен электродвигатель на моем VW Beetle 1967 года, конверсия набирает обороты. У меня есть б / у контроллер, и я готов приступить к монтажу компонентов.Таким образом, в списке покупок остается один ключевой элемент оборудования.

    Я забрал контроллер двигателя Curis 1231C (на фото) во вторник у Кайла Дэнси из ZEV Utah. Он был бесценным ресурсом, когда я перехожу с бензина на электричество.

    Контроллер мотора принимает входные данные от педали акселератора и преобразует их в соответствующее количество мощности для передачи в мотор. Это критически важная часть автомобиля как для эффективности, так и для производительности. Контроллер старый, но в хорошем состоянии и стоит 800 долларов.Он выдержит до 144 вольт и 500 ампер, оставляя мне достаточно места, чтобы добавить больше батарей к тем 10, которые я запланировал на данный момент.

    Аккумуляторы аккуратно сложены в моем гараже, так что все, что мне сейчас нужно, это зарядное устройство. Такие компании, как Russco и Quick Charge, производят неплохие зарядные устройства, которые относительно доступны по цене от 500 до 1000 долларов. Это может показаться значительным изменением, но вы можете легко сбросить гранду или больше на высококлассные юниты из зиванов и мансанитас. Для меня даже пять купюр — это уже много.

    Я знал, что, приступая к этому проекту, мне нужно проявить творческий подход, чтобы уложиться в мой скудный бюджет. Я поймал несколько поломок из-за использованных батарей, и я заключил приятную сделку на электродвигатель Mars. Но у меня осталось меньше 500 долларов в копилке и много всяких всяких вещей, которые нужно купить.

    Это заставило меня задуматься о зарядном устройстве DIY.

    Я слышал о людях, создающих свои собственные зарядные устройства, и задавался вопросом, насколько это сложно, насколько безопасно и дорого. Все, что на самом деле делает зарядное устройство, это подает постоянный ток к батарее, верно? Как трудно это может быть? Создание собственного может заставить меня работать, не нарушая бюджета.

    Я немного покопался и нашел некоторые планы на зарядное устройство своими руками. Соблазнительно сделать это самостоятельно, когда напряжение аккумуляторной батареи в вашем доме близко к 110. Нет проблем — у моего жука будет 120 вольт. Преобразовать переменный ток в постоянный с помощью мостового выпрямителя и некоторых других деталей относительно просто. Я могу добиться небольшого изменения напряжения с помощью индуктора, чтобы поднять 110 вольт до 130 или около того, что является оптимальным для зарядки. Я был приятно удивлен, увидев, насколько легко и дешево это будет сделать.

    Эта информация спрятана, следующим шагом было проконсультироваться с моими братьями и племянником, которые оказались инженерами-электриками или, по крайней мере, имели опыт в таких вещах. Они подтвердили, что мой план сработает, и даже предположили, что управлять зарядным устройством с помощью программируемого микроконтроллера с открытым исходным кодом за 30 долларов будет несложно. Я полагаю, мне нечего терять, так как я купил батарейки по 5 долларов за штуку. Если бы я сбросил несколько тысяч на батареи, я бы не стал вкладывать такие деньги в экспериментальное зарядное устройство.

    Однако есть и недостатки. Главное преимущество выпускаемых зарядных устройств — управляемая зарядка. Они не только отключаются сами по себе, когда батареи полностью заряжены, но и у большинства из них также есть многофазный профиль заряда, который лучше для здоровья батареи и максимального заряда. Я могу добиться аналогичных результатов, но потребуется много времени, исследований и испытаний, чтобы запрограммировать микроконтроллер и получить все правильно — и безопасно — и мне скоро понадобится зарядное устройство. Лучшее, что я могу сделать без микроконтроллера, — это использовать один из этих бытовых таймеров, чтобы убедиться, что зарядное устройство отключилось, прежде чем вызывать проблемы.

    DIY USB-зарядные устройства — ChipsNWafers как собрать USB-зарядное устройство

    Хотите сделать собственное зарядное устройство USB для смартфона, планшета и ноутбука?

    Сегодня USB (универсальная последовательная шина) заряжает практически любое электронное устройство. USB заряжает все, от смартфонов, планшетов и ноутбуков до фитнес-браслетов и других портативных устройств с батарейным питанием. Устройства могут заряжаться от USB-портов в настенных розетках, аэропортах, ноутбуках, автомобилях и т. Д. Примечательно, что спецификация USB изменилась, поскольку устаревшие USB-интерфейсы не успевают за тенденцией к меньшим, более тонким и легким конструкциям.Эра USB Type-C и USB Power Delivery (PD) пришла, чтобы предложить большую мощность и большую гибкость, чем обычная зарядка через USB.

    Тем не менее, разработчикам источников питания USB нужны компоненты, которые могут достичь баланса при создании компактной и экономичной конструкции, отвечающей требованиям по размеру и стоимости, с которыми сталкиваются портативные потребительские устройства. В то же время они должны соответствовать необходимым стандартам безопасности и энергоэффективности.

    Вот несколько эталонных дизайнов, которые помогут вам начать разработку зарядного устройства USB. Им предоставляется полная схема, спецификация, макет и многое другое. Проверь их!

    1. Недорогое зарядное устройство Mini USB для смартфонов / планшетов

    Вот компактная и экономичная форма дизайна, предназначенная для заполнения маленького белого кубика, занимающего пространство 1 ″ на 1 ″ на 1 ″. Он подключается к стандартной розетке переменного тока и заряжает смартфоны, планшеты и карманные компьютеры. Конструкция включает в себя TPS2511 от TI, USB-коммутатор и контроллер порта зарядки в одном корпусе. Он также включает контроллер мощности UCC28700 Fly, позволяющий снизить мощность в режиме ожидания до менее 30 мВт.Это означает пятизвездочный рейтинг энергопотребления!

    Переключатель USB TPS2511 обеспечивает соответствие ограничению тока USB и стандартам безопасности. Порт зарядки содержит все необходимые управляющие сигналы для соответствия стандарту BC1.2, а также протоколы установления связи для всех популярных смартфонов и портативных устройств.

    Щелкните здесь, чтобы просмотреть образец дизайна.

    2. 5V / 2.1A автомобильное зарядное устройство Smart USB

    Зарядные устройства

    DC / DC в автомобилях становятся довольно популярными. Этот эталонный дизайн представляет собой законченное автомобильное зарядное устройство USB от автомобильного аккумулятора.Эта компактная конструкция рассчитана на то, чтобы поместиться в розетку прикуривателя и обеспечить единственный USB-порт для зарядки. При входном напряжении от 9 В до 40 В постоянного тока эта конструкция обеспечивает выход 5 В / 2,1 А для смартфонов и планшетов. Выключатель питания USB TPS2511 предлагает адаптивную электрическую сигнатуру для распознавания и зарядки многих устройств.

    Щелкните здесь, чтобы просмотреть образец

    3. Устройство быстрой зарядки USB PD, 18 Вт

    Вы хотите создать адаптер питания USB, адаптированный к электронным устройствам следующего поколения? В этом эталонном дизайне описывается, как сделать преобразователь переменного тока в постоянный мощностью 18 Вт, совместимый с типом C и USB-PD, идеальным для зарядных устройств для интеллектуальных мобильных устройств. Он заявлен как быстрый, компактный и очень энергоэффективный и предлагает выходное напряжение 5 В / 3 А или 9 В / 2 А. В конструкции используются контроллеры InnoSwitch-CP и Weltrend WT6630P USB TypeC USB-PD. WT6630P — это высокоинтегрированный USB-контроллер PD, который минимизирует количество внешних компонентов за счет интеграции многих компонентов, что обеспечивает малый форм-фактор и низкую стоимость спецификации. Проект содержит спецификацию источника питания, схему, ведомость материалов, документацию на трансформатор, компоновку печатной схемы и данные о производительности.

    Щелкните здесь, чтобы просмотреть образец дизайна.

    4. Быстрое автомобильное зарядное устройство USB 60 Вт

    Эталонный дизайн автомобильного зарядного устройства CCG2 60 Вт описывает, как сделать зарядное устройство USB-C на базе розетки с поддержкой USB PD 2.0. Размеры зарядного устройства: 49,00 мм (Д) x 45,00 мм (Ш) x 11,92 (В). Он разработан для работы со стандартным приспособлением для зажигалки (CLA). В режиме PD он поддерживает вывод [защищен по электронной почте], [защищен по электронной почте], [защищен по электронной почте], [защищен по электронной почте], [защищен по электронной почте], [защищен по электронной почте] и [защищен по электронной почте].Плата может быть запрограммирована на поддержку любого выходного напряжения от 0 до 20 В с разрешением 100 мВ. Он работает с любым входом постоянного тока от 4 до 24 В. Приложения включают быструю и эффективную зарядку сотового телефона (Galaxy Note 8 / s8 / s8 plus, iPhone / iPad), нового MacBook 12 дюймов / MacBook Pro и других ноутбуков / ноутбуков USB-C.

    Щелкните здесь для получения дополнительной информации.

    Связанные

    Регулируемая схема автомобильного зарядного устройства для гаражных механиков

    Если вы автомобильный техник, автомобильный техник или механик, вы можете найти эту дешевую, но мощную схему автомобильного зарядного устройства чрезвычайно удобной, так как ее можно использовать для зарядки всех типов аккумулятора автомобиля и мотоцикла за ночь с минимальными усилиями.

    Это зарядное устройство особенно подходит для гаражей, поскольку оно имеет прочную конструкцию, не требующую обслуживания, что позволяет механику использовать его без особых мер предосторожности. Единственная предосторожность, которую необходимо принять, — это выбор напряжения от 6 В до 12 В, в зависимости от батареи.

    Еще одним преимуществом этого твердотельного автомобильного зарядного устройства является то, что автомеханик может оставить аккумулятор без присмотра после подключения его к зарядному устройству, поскольку зарядное устройство само позаботится обо всем, начиная с автоматического отключения полной зарядки и заканчивая контролируемой зарядкой по току. .

    Основные характеристики

    • Недорогая конструкция, построенная из отдельных обычных деталей.
    • Регулируемое напряжение зарядки
    • Регулируемый ток зарядки.
    • Полностью транзисторный твердотельный корпус.
    • Подходит для всех аккумуляторов автомобилей и мотоциклов.
    • Автоматическое отключение
    • Индикатор уровня заряда и состояния

    Полностью заряженная батарея повышает ток холодного пуска

    Эту схему также могут использовать все автомобилисты, чтобы они могли расслабиться, особенно холодным утром.Устройство автоматически заряжает аккумулятор автомобиля в течение ночи, так что в морозное утро двигатель автомобиля запускается легко и при первом запуске.

    При установке устройства для подзарядки аккумулятора в ночное время очень важно убедиться, что аккумулятор не перезарядится ни при каких обстоятельствах.

    Чтобы предотвратить перезарядку, выходное напряжение зарядного устройства должно быть ограничено до правильного безопасного предела.

    Для 12-вольтных аккумуляторов оптимальное безопасное напряжение зарядки составляет примерно 14.1 В, а для аккумуляторов 6 В — около 7 В.

    Порог полного напряжения заряда автомобильного аккумулятора 12 В регулируется с помощью предустановки P2, а для аккумулятора мотоцикла 6 В — с помощью предустановки P1.

    Принципиальная схема

    Как работает автоматическое отключение при полном уровне заряда

    Ситуация с перезарядкой контролируется с помощью следующих операций схемы.

    Пока аккумулятор заряжается, уровень его напряжения медленно повышается, пока не достигнет уровня заряда 80 или 90%.Фактически это устанавливается предустановками P2 или P3, как объяснялось ранее.

    Теперь, когда уровень напряжения начинает достигать уровня полного заряда, ток начинает падать, пока не достигнет отметки почти 0 ампер. Это обнаруживается каскадом датчика тока, построенным на транзисторе T1 / T2 или BC547 / BC557, который мгновенно проводит и отключает смещение к базе T3 (BD138).

    Это, в свою очередь, осушает базовое смещение для силового транзистора 2N3055, отключая подачу заряда аккумулятора.

    Транзисторы T3, T4 на самом деле ведут себя как пара PNP / NPN Дарлингтона с высоким коэффициентом усиления и высокой мощностью для эффективной передачи тока на подключенную батарею.

    Как работает датчик тока

    Ступень датчика тока с использованием T1, T2 и предустановки P1 может использоваться для установки любого тока в диапазоне от 2 до 6 ампер для зарядки соответствующего автомобильного аккумулятора. При токе 6 ампер автомобильный аккумулятор на 60 Ач можно зарядить за 12 часов до уровня 80%, что является почти полным уровнем заряда аккумулятора.

    Как контролируется состояние зарядки

    Выходной ток зарядки или состояние зарядки можно непрерывно контролировать с помощью обычного амперметра.Это может быть любой дешевый амперметр соответствующего номинала.

    Резисторы серии Rs используются для соответствующей калибровки отклика измерителя на отклонение на полную шкалу вначале и отклонение на 0 В при полной зарядке.

    Конденсатор Cp гарантирует, что стрелка счетчика не будет вибрировать из-за частоты 100 Гц от мостового выпрямителя.

    Как схема предотвращает десульфатацию

    Следует отметить, что в эту схему зарядного устройства автомобильного аккумулятора не входит фильтрующий конденсатор, что помогает реализовать два фактора: 1) стоимость и экономия места, 2) увеличение срока службы аккумулятора за счет минимизации шансов сульфатации пластин. Единственным сглаживающим элементом в зарядном устройстве является сам автомобильный аккумулятор!

    Как установить предустановки

    Как видно, предустановки P2, P3 связаны с несколькими выпрямительными диодами и стабилитронами. Когда предустановка 1K находится на максимальном уровне, она устанавливает соответствующие выходы на 14 В и 7 В для заряда батареи 12 В и 6 В соответственно.

    Предустановки 1 K позволяют пользователю точно настроить полный уровень заряда до желаемого точного значения. В случае, если максимальное значение по умолчанию не достигает рекомендуемых уровней 14.1 В и 7 В, пользователь может добавить дополнительный выпрямительный диод с существующими диодами D3, D4 или D5, а затем настроить предустановки 1K до тех пор, пока не будет определен точный выходной уровень полного заряда.

    Как установить предел тока

    Ограничение выходного тока можно зафиксировать, соответствующим образом отрегулировав предустановку P1 следующим образом:

    Изначально держите ползунок P1 в направлении резистора 68 Ом.

    Подключите амперметр на 10 ампер к эмиттеру 2N3055 и земле.

    Теперь медленно регулируйте P1, пока желаемый максимальный ток не будет определен по показаниям счетчика.Это позволит зафиксировать выходной ток зарядки автомобильного аккумулятора на требуемом оптимальном уровне.

    О компании Swagatam

    Я инженер-электронщик (dipIETE), любитель, изобретатель, разработчик схем / печатных плат, производитель. Я также являюсь основателем веб-сайта: https://www.homemade-circuits.com/, где я люблю делиться своими инновационными идеями и руководствами по схемам.
    Если у вас есть запрос, связанный со схемой, вы можете взаимодействовать с ним через комментарии, я буду очень рад помочь!

    Сделать или не делать станцию ​​для зарядки электромобиля своими руками — длинная хвостовая труба

    Зарядная станция своими руками — лучший способ восстановить контроль над зарядкой электромобилей? «Сделай сам» — это люди, которые тренируют свои навыки, чтобы делать что-то самостоятельно, а не отдавать всю власть мегакорпорациям. Хорошо это или плохо, но решающие электромобили должны заряжаться через зарядную станцию, а не просто подключаться к розетке. Это предел, который вызывает у некоторых из нас раздражение, что приводит к нескольким планам с открытым исходным кодом для зарядных станций для электромобилей.

    В Великобритании Zero Carbon World спонсировала сессии, на которых люди строят свои собственные зарядные станции.

    В марте ZCW разместила на своем веб-сайте письмо британской ассоциации EVSE, в котором выражается резкое неодобрение действий ZCW по продвижению DIY EVSE.(EVSE == Оборудование для обслуживания электромобилей, также известное как зарядная станция)

    Ассоциация сообщает, что они узнали, что ZCW «одобряет и рекомендует производство самодельных зарядных станций для электромобилей». Ассоциация категорически не одобряет это и просит ZCW прекратить это делать, иначе Ассоциации придется обратиться в вышестоящие инстанции.

    Откройте дверь в сеть Tesla Destination Charger с помощью этих адаптеров Tesla-J1772

    Спонсируемый

    Ассоциация описывает DIY EVSE как «потенциально опасные», которые могут привести к травмам, пожарам или повреждению транспортных средств.

    Вопрос в том, действительно ли британская ассоциация EVSE заботится о безопасности или же заинтересована в сохранении своего рода власти / контроля. Если единственный способ зарядить электромобиль — через официально одобренный EVSE, то владельцы электромобилей находятся под определенным контролем.

    Грант Томас с его ZCW DIY EVSE

    Самая большая свобода для владельцев электромобилей — это зарядка электромобилей через обычные удлинители.Но власти решили, что обычные розетки не подходят для зарядки электромобилей. Нам не нужно переосмысливать все причины, по которым электромобили заряжаются через EVSE. Суть в том, что электромобили должны оплачиваться через это специализированное оборудование. Итак, какова справедливая стоимость этого оборудования?

    Самый дешевый портативный EVSE стоит около 500 долларов, а цены могут достигать 2500 долларов. Почему так много? EVSE — это, по сути, прославленное реле, проводка которого находится в коробке, на которую можно попасть дождем.Почему это должно стоить больше 200 долларов?

    DIY EVSE, как я видел, обходятся без изящества и просто используют обычные распределительные коробки, какие можно найти в хозяйственном магазине. Компоненты типичны для того, что используется для электромонтажа здания. Большинство запчастей можно было найти в Home Depot.

    Посмотрите вокруг, и вы увидите, что в то время как большинство людей полностью удовлетворены покупкой произведенного EVSE и продолжением своей жизни, у других есть уверенность, навыки и желание строить вещи для себя.

    Не слишком ли авторитарно утверждать, что «не строить собственный EVSE»?

    Что мы, как общество, теряем, когда не можем создавать свои собственные вещи?

    О Дэвиде Херроне
    Дэвид Херрон — писатель и инженер-программист, живущий в Кремниевой долине. В первую очередь он пишет об электромобилях, системах экологически чистой энергии, изменении климата, пике добычи нефти и связанных с ними проблемах. Когда он не пишет, он занимается программными проектами и иногда работает инженером-программистом.Дэвид писал для таких сайтов, как PlugInCars и TorqueNews, и работал в таких компаниях, как Sun Microsystems и Yahoo.

    • Если «мы» выберем более разумные конструкции, проектирование автомагистрали может снизить риск смерти и травм — 28 марта 2015 г.
    • GM действительно сделала товарный знак «тревога диапазона», только позже отказалась от этого знака — 25 марта 2015 г.
    • Правительство США издает новые правила гидроразрыва пласта, которые некоторые называют «беззубыми» — 20 марта 2015 г.
    • Волшебная пилюля Tesla Motors от беспокойства по поводу дальности не вселяет уверенности в дальности полета — 19 марта 2015 г.
    • Обновленная информация о масляном составе Galena IL — задействован 21 вагон предположительно более безопасной конструкции CP1232 — 7 марта 2015 г.
    • Еще один поезд с нефтяными бомбами — почему они отправляют сырую нефть поездом? — Симптомы зависимости от ископаемого топлива — 6 марта 2015 г.
    • Chevron отказывается от гидроразрыва в Румынии в рамках более широкого отказа от операций по гидроразрыву в Восточной Европе — 22 февраля 2015 г.
    • Отвечайте на статьи против электромобилей с правдой и гордостью — правда затмевает все искажения — 19 февраля 2015 г.
    • Apple сильно рискует при разработке автомобиля? Пожалуйста, Apple, не ходи туда! — 16 февраля 2015 г.
    • Toyota, Nissan и Honda работают над инфраструктурой топливных элементов в Японии для правительства Японии — 12 февраля 2015 г.

    О Дэвиде Херроне

    Дэвид Херрон — писатель и инженер-программист, живущий в Кремниевой долине.В первую очередь он пишет об электромобилях, системах экологически чистой энергии, изменении климата, пике добычи нефти и связанных с ними проблемах. Когда он не пишет, он занимается программными проектами и иногда работает инженером-программистом.

Leave a Comment

Ваш адрес email не будет опубликован. Обязательные поля помечены *