Что такое сателлит в автомобиле – Сателлиты КПП — изучаем их устройство

Содержание

Принцип работы дифференциала и его устройство

Автоликбез28 января 2018

Крутящий момент, создаваемый двигателем внутреннего сгорания, передается колесам с помощью различных механизмов – валов, шлицевых и шестеренчатых передач, дифференциалов. Последние вызывают наибольший интерес у любителей экстремальной езды по бездорожью, поскольку принимают участие в распределении мощности. Многие автолюбители слабо представляют работу данного узла, поэтому стоит рассмотреть вопрос, что такое дифференциал в автомобиле, объяснить его устройство и принцип действия.

Дифференциал

Назначение механизма

Чтобы понять роль дифференциала, применяющегося в транспортных средствах всех типов, нужно рассмотреть конструкцию обычного планетарного редуктора, передающего усилие от карданного вала двум полуосям. Алгоритм работы агрегата прост:

  1. Кардан вращает хвостовик с косозубой шестеренкой на конце.
  2. От хвостовика крутится большая планетарная шестерня, соединенная с двумя полуосями.
  3. Крутящий момент передается от планетарной шестерни полуосям и закрепленным на концах колесам.

Без дифференциала редуктор поровну распределяет крутящий момент на 2 оси, в результате колеса вертятся с одинаковой скоростью. Такое разделение вполне годится для прямолинейного движения, которое в реальности встречается довольно редко – даже при езде по ровным участкам трассы автомобиль отклоняется от прямой линии.

Чтобы машина идеально прошла поворот, колеса одного моста должны вращаться с разными скоростями, поскольку внешнее катится по более широкой дуге. Простой редуктор, обеспечивающий одинаковое вращение обеих полуосей, на повороте заставит одну шину скользить, вторую – буксовать, что заметно ухудшает маневренность авто.

Справка. Проблема весьма актуальна для внедорожников с постоянным полным приводом. В данном случае крутящий момент делится не только между колесами, но и между осями, вращающими редукторы переднего и заднего моста.

Совмещенный с планетарным редуктором дифференциал нужен для изменения угловых скоростей правого и левого колеса в зависимости от крутизны поворота. Механизм автоматически распределяет крутящий момент на полуоси, позволяя колесным покрышкам совершать разное число оборотов при движении автомобиля по дуге. Без дифференциала нормальная эксплуатация транспортного средства невозможна по таким причинам:

  • недостаточная управляемость;
  • быстрое истирание шин;
  • ускоренный износ деталей редуктора, валов и полуосей.

Как работает свободный дифференциал?

Механизмами данного типа оснащается подавляющее большинство машин с приводом на переднюю либо заднюю ось. В первом случае узел размещается внутри коробки передач, во втором является частью планетарного редуктора заднего моста.

Конструкция планетарной передачи подразумевает использование шестеренок конической формы. Существуют и другие разновидности автомобильных редукторов – цилиндрические, конусно-цилиндрические и червячные.

Устройство дифференциала свободного типа предусматривает совмещение с главной передачей. Механизм заднего моста включает следующие детали:

  • хвостовик с конической ведущей шестерней, соединенный с карданным валом;
  • ведомая планетарная шестеренка;
  • корпус ведомой шестерни оборудован двумя проушинами, куда вставляются оси сателлитов;
  • сателлитные шестеренки конической формы;
  • ведомые шестерни полуосей;
  • подшипники;
  • корпус редуктора.

Устройство свободного дифференциалаВ легковых авто устанавливается 2 сателлита, на грузовиках – четыре.

Изучить принцип работы свободного дифференциала

 предлагается на примере:

  1. Пока машина едет прямо, колеса крутятся с одинаковой скоростью. Хвостовик вращает «планетарку» вместе с закрепленными на ней сателлитами, причем последние остаются неподвижными и передают равный крутящий момент обеим осям за счет давления на зубья.
  2. Автомобиль входит в поворот. Крутящиеся вместе с большой шестерней сателлиты начинают вращаться вокруг собственной оси, причем в разные стороны.
  3. Мощность на валу делится не пополам, а в зависимости от крутизны дуги. Благодаря комбинированному вращению сателлитов полуоси и колеса совершают разное число оборотов, машина успешно преодолевает поворот без проскальзывания и пробуксовки резины.

Дифференциал получил название свободного, поскольку передает больший крутящий момент на колесо, которое вращается легче. Понятно, что на повороте шина внутри дуги сопротивляется вращению, поэтому дифференциал отдает больше мощности другой оси – противоположное колесо крутится быстрее.

Примечание. Полноприводные авто и внедорожники оснащаются тремя дифференциальными разделителями мощности – межосевым (ставится в раздаточной коробке) и двумя межколесными.

Свободный механизм решает главную проблему, но создает побочную. Когда одна покрышка начинает контактировать со скользким покрытием – льдом, укатанным снегом, грязью, начинается пробуксовка. Причина – дифференциальный механизм, отдающий максимум мощности в сторону наименьшего сопротивления. Для предотвращения подобных ситуаций на многих автомобилях задействована временная блокировка дифференциала.

Разновидности механизмов

Чтобы избавиться от пробуксовок на скользком дорожном покрытии либо в условиях бездорожья, производители комплектуют транспортные средства дифференциальными устройствами следующих конструкций:

  • механизм свободного типа с принудительной блокировкой от привода;
  • частично блокирующийся дифференциал повышенного сопротивления;
  • самоблокирующаяся червячная передача типа Torsen.

В первом варианте применяется рассмотренный выше шестеренчатый узел, дополнительно оснащенный блокировочным устройством. Система функционирует просто: в случае необходимости водитель активирует привод, фиксирующий сателлиты в неподвижном состоянии. Крутящий момент начинает делиться ровно пополам, оси вращаются с одинаковой скоростью и транспортное средство успешно преодолевает проблемное место.

Механизм с принудительной блокировкойПринудительная блокировка межосевого дифференциала включается с помощью различных приводов:

  • механический – от рычага раздаточной коробки;
  • электрический;
  • пневматический;
  • гидравлический.

Аналогичные приводные элементы применяются для остановки и удержания сателлитов переднего либо заднего моста.

Автомобили дорогой комплектации производители оснащают антипробуксовочной системой. Она «обманывает» дифференциальное устройство другим способом: по сигналу датчика, фиксирующего быстрое вращение одного колеса, электроника отдает команду его притормозить. Тогда сателлитные шестеренки начинают передавать больше мощности на другую ось и авто прекращает «грестись» на месте.

Устройство повышенного сопротивления

Помимо сателлитов, ведущих и ведомых шестерен, дифференциал повышенного трения включает такие элементы:

  • корпус, жестко прикрепленный к планетарной шестеренке;
  • пакет фрикционных дисков, установленных на каждой полуоси;
  • стальные диски, чьи выступы зафиксированы в корпусе;
  • распорная пружина, вставленная между коническими шестернями полуосей.

Дифференциал повышенного трения

Стальные и фрикционные диски (похожие применяются в сцеплении) установлены поочередно, первые вращаются вместе с корпусом, вторые – с осями. Конусообразная шестеренка надета на шлицы оси и способна смещаться на определенное расстояние. Пружина поддавливает 2 противоположных осевых шестерни.

Частичная блокировка дифференциала происходит следующим образом:

  1. На прямолинейном сухом участке дороги сателлиты неподвижны, а диски вращаются друг относительно друга.
  2. При попадании одной шины на скользкий участок начинается пробуксовка. Благодаря конусной форме зубьев шестеренки со стороны остановившегося колеса начнут взаимно отталкиваться.
  3. Шестерня полуоси сдвинется и сожмет пакет дисков. Возникнет сила трения, заставляющая ось вращаться вместе с корпусом напрямую от «планетарки» в обход сателлитов.

Подобное устройство самостоятельно регулирует степень блокировки – чем медленнее крутится покрышка с хорошим сцеплением, тем сильнее сжимаются диски и подается больше крутящего момента.

Самоблокирующиеся передачи Torsen

Принцип работы данных механизмов базируется на одной особенности червячной пары: шестеренка способна передавать вращение сателлиту, но обратное действие невозможно. Все шестерни, включая сателлитные, сделаны в виде цилиндров с косыми дугообразными зубьями. Всего в механизме применяется 3 пары червячных сателлитов, установленных вокруг шестеренок полуосей.

Самоблокирующаяся передача TorsenСамоблокирующийся дифференциал работает так:

  1. Во время прямолинейного движения червячные сателлиты ведут себя аналогично конусным – не крутятся сами, но вращают оси от главной передачи.
  2. На повороте число оборотов одной полуоси вырастет и она придаст вращение парам сателлитов – мощность начнет распределяться по-разному.
  3. Поскольку каждая пара сателлитов связана между собой прямозубой передачей, пробуксовка одного колеса исключается. Ось способна крутить свой сателлит, тот вращает соседний, который уже не может поворачивать вторую полуось. Механизм блокируется автоматически.

Устройство Torsen – самое надежное и передовое, но слишком дорогое, поэтому ставится на машины максимальной комплектации. В остальных применяются более доступные механизмы повышенного трения.

В среде любителей экстремальной езды по бездорожью известен простейший способ избежать пробуксовок – блокировка заднего дифференциала с помощью сварки. Сателлиты намертво привариваются к осям и всегда находятся в неподвижном состоянии. Правда, подобные автомобили предназначены только для езды по грунту и снегу – эксплуатировать их на твердом покрытии чересчур неудобно и дорого.

autochainik.ru

Дифференциал подробно — Энциклопедия журнала «За рулем»

Дифференциал — механизм распределения крутящего момента входного вала между двумя выходными полуосями ведущих колес или, на автомобилях повышенной проходимости,для распределения крутящего момента между передней и задней ведущими осями.
Это часть трансмиссии, которая на автомобилях классической и переднеприводной компоновки обычно выполняется в виде единого блока с главной передачей,а на внедорожниках встраивается в раздаточную коробку
Свободный дифференциал всегда делит поступающий на него крутящий момент поровну — не зависимо от того, с равными или с разными скоростями вращаются ведущие колеса (или ведущие оси).

Назначение дифференциала

При движении автомобиля по криволинейным участкам дороги — например, в поворотах — колеса ведущей оси катятся по окружностям разной длины. Внешнее (по отношению к центру поворота автомобиля) колесо проходит больший путь, чем внутреннее. Эта разница тем больше, чем круче поворот. Аналогичная проблема возникает и в движении по прямой, если используются ведущие колеса разной размерности и т.п. Если в этих ситуациях колеса соединить жесткой осью,окажется, что одно колесо вращается быстрей, чем нужно для прохождения заданной траектории,а другое медленней. Значит, оба колеса будут пробуксовывать, испытывать повышенные нагрузки, сильней нагреваться и изнашиваться. Увеличится и расход топлива. Наконец, это нарушает курсовую устойчивость автомобиля и ведет к его заносу или сносу — особенно, на скользких дорогах.
Для компенсации разницы проходимого ведущими колесами пути используется особый механизм — дифференциал. Простейший, свободный дифференциал уравнивает крутящие моменты (или тяговые силы) обоих ведущих колес, и если скорости их вращения (или линейного движения) разные, то и мощности на них пропорциональны этой разнице. Колесо, вращающееся быстрей, тратит на это несколько большую мощность, чем то, которое вращается медленней.
Таким образом дифференциал предназначен для обеспечения вращения ведущих колес с разными угловыми скоростями при постоянно передаче крутящего момента на оба колеса ведущей оси. Эта же логика присутствует и в работе межосевого дифференциала.

Устройство и принцип действия

Дифференциал классической конструкции устроен просто. Например, на заднеприводном автомобиле вращение от ведомого вала коробки передач передается через карданный вал на ведущую коническую шестерню главной передачи, которая находится в постоянном зацеплении с ведомой шестерней главной передачи. Ведомая шестерня является одновременно корпусом дифференциала, в котором перпендикулярно оси ведомой шестерни закреплена ось сателлитов — малых конических шестерен. Последние вращаются вместе с корпусом дифференциала относительно оси ведомой шестерней главной передачи. Сателлиты находятся в постоянном зацеплении с коническими шестернями левой и правой полуосей ведущих колес.
При прямолинейном движении автомобиля сателлиты относительно собственной оси не вращаются. Но каждый, подобно равноплечему рычагу, делит крутящий момент ведомой шестерни главной передачи поровну между шестернями полуосей.
Когда автомобиль движется по криволинейной траектории, внутреннее по отношению к центру описываемой автомобилем окружности колесо вращается медленней,наружное быстрей — при этом сателлиты вращаются вокруг своей оси, обегая шестерни полуосей. Но принцип деления момента поровну между колесами — сохраняется. Мощность же, подаваемая на колеса, перераспределяется,- ведь она равна произведению крутящего момента на угловую скорость колеса. Если радиус поворота настолько мал, что внутреннее колесо останавливается, тогда внешнее вращается с вдвое большей скоростью, чем при движении автомобиля по прямолинейной траектории. Итак, дифференциал не меняет крутящий момент, но перераспределяет между колесами мощность. Последняя всегда больше на том колесе, которое вращается быстрее.

Применение дифференциалов

В автомобилях с одной ведущей осью устанавливается один дифференциал, объединенный с главной передачей. В автомобилях с двумя и более ведущими осями дифференциалы устанавливаются в каждую ведущую ось (например, в трехосном грузовике или автобусе с двумя задними ведущими осями дифференциалы установлены в среднюю и заднюю оси). В автомобилях с подключаемым полным приводом дифференциалы устанавливаются в каждую ведущую ось (у двухосного полноприводного джипа с подключаемым передним ведущим мостом два дифференциала — по одному в каждой ведущей оси), но эксплуатация этих машин с постоянно подключенной передней осью не рекомендуется по причине повышенного износа главных передач и колес из-за неравномерно распределяемой мощности между осями. В свою очередь в автомобилях повышенной проходимости с постоянно подключенными ведущими осями применяют три дифференциала — по одному в каждой ведущей оси и один межосевой, установленный в раздаточной коробке. Межосевой дифференциал распределяет мощность между ведущими осями в зависимости от длины проходимого колесами оси пути. К примеру, передние колеса могут преодолевать возвышение, задние еще двигаться по прямой — передние колеса описывают более длинный путь, чем задние, соответственно, межосевой дифференциал обеспечивает передачу большей части мощности двигателя на переднюю ось, чем на заднюю. На многоосных транспортных средствах с несколькими ведущими осями применяют межтележечный дифференциал.
Дифференциал не применяется на транспортных средствах с одним ведущим колесом — в частности, на мотоциклах и трициклах с двумя передними управляемыми колесами. Если трицикл построен по схеме с одним передним управляемым колесом и двумя ведущими задними, то на нем применяют автомобильный ведущий мост с дифференциалом. Обычно подобные трициклы строят по индивидуальным заказам на базе популярных тяжелых моделей (пример — кастомные трициклы на базе «Харлей-Дэвидсон»).
На гоночных автомобилях на основе серийных моделей (например, на раллийных или для кольцевых гонок) дифференциал перед гонками блокируют, поскольку повороты такие машины проходят на большой скорости и с заносом. В данном случае склонность автомобиля к заносу из-за отсутствия дифференциала считается преимуществом.

Недостаток дифференциала

Главным недостатком дифференциала классической конструкции является проблема пробуксовки колеса, потерявшего контакт с поверхностью дорожного полотна. Когда одно из ведущих колес вращается в вывешенном состоянии его скорость вдвое больше, чем была бы при этих же оборотах ведомой шестерни дифференциала при нормальном движении по прямой. Зато второе колесо вообще не вращается. Причина проста. Момент сопротивления вращению вывешенного колеса ничтожен, соответственно мал и подводимый к нему крутящий момент. Значит, столь же мал крутящий момент и на противоположном колесе — оно стоит. Если же одно из колес буксует — с повышенными оборотами, но с существенным сопротивлением (например, в грязи, песке и т.п.), то такой же крутящий момент поступает и на другое, не буксующее, колесо. В результате автомобиль может двигаться с небольшой скоростью. При этом на буксующее колесо подается более высокая мощность — она тратится на нагрев шины, дороги и т.д. Эффект пробуксовки снижает проходимость автомобиля со свободным дифференциалом. Для решения этой проблемы автомобили оснащают механизмами блокировки дифференциала — ручной или автоматической — различной конструкции.

Механизмы блокировки дифференциала

  • Ручная блокировка дифференциала

Самым простым способом блокировки дифференциала является применение механизма с ручным управлением. Этот вид блокировки применяется на автомобилях повышенной проходимости. Блокировка производится блокировочными муфтами, которые фиксируют сателлиты. Дифференциал отключается. К достоинствам данного типа блокировки можно отнести простоту и надежность конструкции, к недостаткам — необходимость точно оценивать дорожную обстановку и отключать блокировку дифференциала при движении по качественным дорогам во избежание поломок главной передачи и ведущего моста в целом.

  • Блокировка дифференциала с электронным управлением

На современных полноприводных легковых автомобилях повышенной проходимости с развитым компьютерным управлением работой агрегатов и механизмов устанавливают антипробуксовочную систему с электронным управлением. Как только бортовой компьютер автомобиля (или электронный блок антипробуксовочной системы) получает от датчика вращения сигнал о том, что одно колесо оси вращается значительно быстрей второго, свободное колесо притормаживается рабочим тормозом — благодаря свободному дифференциалу мощность передается на колесо, которое не утратило контакта с дорожным покрытием. Эта система требует наличия системы раздельного привода тормозов всех четырех колес и точной отладки датчиков.
Антипробуксовочные системы позволяют достаточно тонко регулировать распределение мощности в зависимости от состояния дорожного покрытия и избежать потерь мощности двигателя при срабатывании дифференциала. С другой стороны, управляющая система из датчиков и исполнительных приводов тормозов (на соленоидах) обладает инерционностью, поэтому работает с некоторым запозданием, что приходится учитывать водителю.
На гоночных автомобилях иногда применяются фрикционные дифференциалы с тормозными ленточными механизмами, управляемыми электроникой.

  • Автоматическая блокировка с применением фрикционной муфты

На спортивные автомобили, выпускаемые малыми сериями или по заказу, иногда устанавливают фрикционные самоблокирующиеся дифференциалы. На серийных машинах эти дифференциалы редкость, поскольку они требуют особого обслуживания и подвержены интенсивному износу.
Фрикционные муфты устанавливаются между полуосевыми шестернями и корпусом дифференциала. При прямолинейном движении автомобиля полуоси вращаются с одинаковой угловой скоростью — сила трения во фрикционных муфтах равна нулю, дифференциал распределяет мощность между колесами ведущей оси поровну. Как только одна из полуосей начинает вращаться быстрей, диски фрикционной муфты сближаются, за счет возникающих сил трения муфта притормаживает вращение свободной полуоси. Этот тип дифференциала отличается невысокой эффективностью при большой разнице в угловых скоростях ведущих колес (например, на поворотах с малым радиусом закругления).

* Дифференциал с вязкостной муфтой (вискомуфтой)

Вискомуфта работает подобно фрикционной муфте самоблокирующегося дифференциала, но имеет упрощенную конструкцию. В корпус главной передачи ведущего моста устанавливается вискомуфта, состоящая из двух пакетов перемежающихся перфорированных дисков, вращающихся в вязкой среде на основе силикона. Каждый пакет соединен с левой и правой полуосью. Когда угловая скорость полуосей одинакова, скорость вращения дисков пакета тоже одинакова. Как только один из пакетов, связанный с полуосью, начинает вращаться быстрей другого, вискомуфта начинает притормаживать этот пакет, стремясь выровнять угловые скорости дисков (и, соответственно, полуосей). За счет этого возникает эффект автоматической блокировки свободного колеса.
Этот тип автоматической блокировки имеет ряд недостатков. Во-первых, вискомуфта увеличивает размеры картера ведущего моста. Во-вторых, вискомуфта не отличается высокой эффективностью и не срабатывает при большой разнице угловых скоростей, то есть в условиях тяжелого бездорожья.
К преимуществам вискомуфты относят простоту конструкции. Иногда она применяется вместо дифференциала шестеренчатой конструкции — в паре с конической главной передачей. В большинстве случаев вискомуфта в ведущих мостах не применяется. Ее устанавливают в качестве механизма автоматической блокировки межосевого дифференциала в легковых автомобилях повышенной проходимости (в комфортабельных «паркетниках», не предназначенных для интенсивной эксплуатации в условиях бездорожья).

Другие типы самоблокирующихся дифференциалов

Помимо описанных механизмов автоматической блокировки дифференциала в автомобилях используются и другие типы блокировочных систем.
В военной технике получили распространение зубчатые или кулачковые самоблокирующиеся дифференциалы.
Существует конструкция гидророторного самоблокирующегося дифференциала, в котором использован принцип фрикционной муфты с гидроприводом. При возникновении разницы в угловых скоростях полуосей, муфта тормозит вращение одной из полуосей под воздействием поршня, сжимающего пакет фрикционных дисков. Поршень перемещается давлением масла, нагнетаемого гидронасосом.
На полноприводные автомобили Honda устанавливают блокировку дифференциала с двумя гидронасосами.
На современных легковых автомобилях повышенной проходимости и гоночных машинах все большее применение находят шестеренчатые самоблокирующиеся дифференциалы (осевые и межосевые), в которых использован эффект заклинивания червячной или косозубой передачи при достижении порогового значения разницы мощностей.

wiki.zr.ru

Дифференциал — Энциклопедия журнала «За рулем»

При повороте автомобиля, все его колеса проходят разный по длине путь, и если между двумя ведущими колесами существует жесткая связь, они начнут проскальзывать. Скольжение колес при повороте приводит к повышенному расходу топлива, износу шин, нарушению устойчивости и т. п.
Дифференциал позволяет ведомым валам вращаться с разными угловыми скоростями и выполняет функции распределения подводимого к нему крутящего момента между колесами или ведущими мостами. Дифференциалы бывают межколесными и межосевыми (в случае установки между несколькими ведущими мостами).

Схема работы (а) и детали (б) конического симметричного дифференциала:
1 — коробка сателлитов дифференциала правая;
2 — болт коробки сателлитов;
3 — опорная шайба шестерни;
4, 8 — полуосевые шестерни;
5 — опорная шайба сателлита;
6 — сателлиты;
7 — ось сателлитов;
9 — левая коробка сателлитов дифференциала

Впервые дифференциал был применен в 1897г. на паровом автомобиле. В настоящее время все автомобили имеют межколесные дифференциалы на ведущих мостах. Наиболее распространенным является конический симметричный дифференциал (рис. 3. 32), включающий в себя: корпус, сателлиты, ось сателлитов (или крестовину) и полуосевые шестерни. Обычно число сателлитов в дифференциалах легковых автомобилей — два, грузовых и внедорожных — четыре.
Симметричный дифференциал получил свое название за способность распределять подводимый момент поровну при любом соотношении угловых скоростей, соединенных с ним валов. Применение такого дифференциала в качестве межколесного, обеспечивает устойчивость при прямолинейном движении, а также при торможении двигателем на скользкой дороге.
Существенным недостатком обычного дифференциала является снижение проходимости автомобиля, если одно из его колес попадает в условия малого сцепления с опорной поверхностью. При этом на колесо, находящееся в нормальных сцепных условиях, нельзя подвести крутящий момент, превышающий тот, который может быть реализован на колесе, находящемся в условиях малого сцепления (это приводит к пробуксовке колеса). Для преодоления этого недостатка в некоторых конструкциях используются Дифференциалы полноприводных автомобилей различных конструкций.

Более подробно о дифференциале — в главе Дифференциал подробно
Смотри также Дифференциал Красикова

wiki.zr.ru

Сателлит (механика) Википедия

Планетарная передача с остановленным водилом по сути является двухступенчатой зубчатой передачей с неподвижными осями колес. Планетарная передача (солнечная шестерня остановлена) Планетарная передача (коронная шестерня остановлена) Схема эпициклически движущейся планеты

Планетарная передача (далее — ПП) — механическая передача вращательного движения, за счёт своей конструкции способная в пределах одной геометрической оси вращения изменять, складывать и раскладывать подводимые угловые скорости и/или крутящий момент. Обычно является элементом трансмиссии различных технологических и транспортных машин.

Конструктивно ПП всегда представляет собой набор взаимозацепленных зубчатых колёс (не менее 4), часть из которых (не менее 2) имеет общую геометрическую неподвижную ось вращения, а другая часть (также, не менее 2) имеет подвижные оси вращения, концентрически вращающиеся на так называемом «водиле» вокруг неподвижной. Зубчатые колёса на неподвижной оси всегда связаны друг с другом не напрямую, а через зубчатые колёса на подвижных осях, а ввиду того, что вторые способны не только вращаться относительно первых, но и обкатывать их, тем самым передавая поступательное движение на водило, все звенья ПП, на которые можно подавать/снимать мощность, получают возможность вращаться дифференциально, с тем лишь условием, что угловая скорость любого такого звена не абсолютно хаотична, а определяется угловыми скоростями всех остальных звеньев. В этом плане ПП похожа на планетарную систему, в которой скорость каждой планеты определяется скоростями всех остальных планет системы. Дифференциальный принцип вращения всей системы, а также то, что в своём каноническом виде набор зубчатых колёс, составляющих ПП, собран в некоем подобии солнца и эпициклически движущихся по орбите планет, даёт данной механической передаче такие присущие только ей интернациональные определения, как планетарная, дифференциальная (от лат. differentia — разность, различие) или эпициклическая, каждое из которых в данном случае есть синонимы.

С точки зрения теоретической механики планетарная передача — это механическая система с двумя и более степенями свободы. Эта особенность, являющаяся прямым следствием конструкции, есть важное отличие ПП от каких-либо других передач вращательного движения, всегда имеющих только одну степень свободы. И эта особенность наделяет саму ПП тем важным качеством, что в аспекте воздействия на угловые скорости вращения ПП может не только редуцировать эти скорости, но и складывать и раскладывать их, что, в свою очередь, делает её основным механическим исполнительным узлом не только различных планетарных редукторов, но таких устройств, как дифференциалы и суммирующие ПП.

Планетарная передача и планетарный механизм

В русскоязычной инженерной терминологии термины планетарная передача (далее — ПП) и планетарный механизм (далее — ПМ) зачастую предполагаются как синонимы. Отличия в том, что термин ПП обычно используется в контексте принципиального понимания устройства той или иной передачи вращательного движения, особенно если устройство такой передачи не очевидно (скрыто корпусом/картером) или такая передача обладает определёнными уникальными свойствами, присущими только планетарной, и на этом надо акцентировать внимание. А термин ПМ используется для обозначения конкретного зубчато-рычажного механизма, причём существуют критерии, позволяющие чётко описать ПМ как сборочный узел в составе более крупного узла или агрегата и определить, сколько и каких именно использовано ПМ в конкретной передаче вращательного движения.

Состав планетарного механизма

Конструкция ПП/ПМ основана на различных комбинациях из трёх основных и нескольких одинаковых вспомогательных звеньев. Три основные звена с одной общей осью вращения — два центральных зубчатых колеса и водило. Вспомогательные звенья — набор одинаковых зубчатых колёс на подвижных осях вращения и подшипники.

  • Малое центральное зубчатое колесо с внешними зубьями называется солнечной шестернёй или солнцем (С).
  • Большое центральное зубчатое колесо с внутренними зубьями называется коронной, эпициклической шестернёй или эпициклом (Э).
  • Водило (В) является основой ПМ — это неотъемлемая деталь абсолютно любого ПМ и краеугольный камень всей идеи передачи вращения через планетарную систему с дифференциальной связью. Водило представляет собой рычажный механизм — обычно такую пространственную вилку, ось «основания» которой совпадает с осью самого ПМ, а оси «зубцов» с установленными на них сателлитами концентрически вращаются вокруг неё в плоскости/плоскостях расположения центральных зубчатых колёс. Оси «зубцов» — это и есть так называемые подвижные оси или оси сателлитов
  • Сателлиты () представляют собой зубчатые колёса (или группы колёс) с внешними зубьями. При этом сателлиты находятся в одновременном и постоянном зацеплении с обоими центральными зубчатыми колёсами ПМ. Количество сателлитов в ПМ обычно составляет от двух до шести (чаще всего — три, так как только при трёх сателлитах нет нужды в специальных уравновешивающих механизмах) и точного значения для функциональности ПМ не имеет. В различных ПМ применяются сателлиты одновенцовые (одно простое зубчатое колесо), двухвенцовые (два соосных зубчатых колеса с общей ступицей), трёхвенцовые и так далее. Также сателлиты могут быть парными — то есть, располагающимимся на осях одного водила и зацепленными в паре.

Зубчатые колёса, составляющие ПМ, могут быть любого известного типа: прямозубые, косозубые, шевронные, червячные. Тип зацепления в общем случае не важен и на принципиальную работу ПП влияния не оказывает.

В любом ПМ оси вращения центральных зубчатых колёс и водила всегда совпадают. Однако это не значит, что оси сателлитов всегда будут параллельны основной оси. Как и в случае с простыми зубчатыми передачами, здесь возможны варианты параллельных, скрещивающихся и пересекающихся осей. Пример второго варианта — межколёсный дифференциал с коническими зубчатыми колёсами. Пример третьего варианта — самоблокирующийся дифференциал Torsen с червячным зацеплением.

Любой ПМ, независимо простой он или сложный, плоский или пространственный, для своей работоспособности должен иметь одно водило с сателлитами и не менее двух любых центральных зубчатых колёс. Под определением «два любые» подразумевается, что это могут быть не только одно солнце и один эпицикл, но и два солнца и ни одного эпицикла, или два эпицикла и ни одного солнца. Три звена, в том числе водило, есть необходимое и достаточное условие для того, чтобы ПМ мог выполнять функции передачи мощности и сложения/разложения потоков: работать в качестве редуктора (в том числе многоскоростного), в качестве дифференциала или суммирующей ПП. Также три звена есть основа такого русскоязычного технического термина, как Трёхзвенный Дифференциальный Механизм (или ТДМ).

Формально, механизмы, состоящие всего из двух звеньев — из водила и всего лишь одного центрального зубчатого колеса — также могут именоваться планетарными. Фактически же, такие двухзвенные ПМ трудно разумно приспособить для выполнения какой-либо работы: они не годятся для передачи мощности с одного основного звена на другое и лишь при определённых условиях могут работать как переусложнённая прямая передача. Увеличение числа основных звеньев одного ПМ в большую сторону — до 4 и более — возможно и формально и фактически, однако при этом такие ПМ не приобретают никаких новых свойств, хотя и получают больше теоретически доступных передаточных отношений и могут давать проектируемой ПП определённые компоновочные преимущества.

Простые и сложные ПМ, планетарный ряд

Схемы наиболее распространённых сложных планетарных механизмов

Критерием деления ПМ на простые и сложные является число составляющих его основных звеньев (именно основных, а число сателлитов — не в счёт). Простой ПМ имеет всего три основных звена: одно водило и два любых центральных зубчатых колеса. Кинематика допускает всего-лишь 7 (семь!) ПМ, подпадающих под это условие: один наиболее распространённый и всем известный, так называемый «элементарный», с набором одновенцовых сателлитов схемы ; три ПМ с двухвенцовыми саттелитами (, , ) и три ПМ с парными взаимозацепленными сателлитами (СВЭ, СВС, ЭВЭ)).

Сложных ПМ гораздо больше чем простых. Их точное число не определено ввиду отсутствия такой нужды, а наиболее распространённые из них приведены на рисунке. Точно так же как и простые ПМ, сложные имеют всего одно водило, но центральных зубчатых колёс может быть три и более. При этом в составе сложного ПМ всегда умозрительно можно выделить несколько простых ПМ (конкретно: три в четырёхзвенном и шесть в пятизвенном), каждый из которых в себя включает два каких-то центральных зубчатых колеса и одно общее водило.

Каждый набор из центральных зубчатых колёс и сателлитов, вращающихся в одной плоскости, образует так называемый планетарный ряд. Простой ПМ с набором одновенцовых сателлитов является однорядным. Все три простые ПМ с двухвенцовыми сателлитами — двухрядные. ПМ с парными взаимозацепленными сателлитами схемы СВЭ — однорядный; схем СВС и ЭВЭ — двухрядные. Таким образом, все простые ПМ могут быть или однорядными или двухрядными. Сложные ПМ, в свою очередь, могут быть двух, трёх и четырёхрядные. Верхнее число рядов в сложном ПМ формально не ограничено, хотя фактически уже пятирядные есть большая редкость, хотя в сборках из планетарных механизмов, применяющихся в многоступенчатых планетарных коробках передач, общее число рядов может быть пять и больше. Нередко термины ПМ и планетарный ряд предполагаются как синонимы, но, в общем случае, это неверно: даже если в отдельных случаях оба термина могут обозначать одно и то же, всегда следует помнить, что их смыл несколько разный.

Плоские и пространственные ПМ

Свободный дифференциал на основе простого плоского двухрядного ПМ с парными сателлитами Свободный дифференциал на основе пространственного ПМ с коническими шестернями

Наличие в составе одного ПМ более одного планетарного ряда не означает, что он является пространственным. Сколько бы ни было рядов, но если плоскости вращения всех составляющих каждый ряд зубчатых колёс параллельны, то такой ПМ будет оставаться плоским. Критерием отличия плоского ПМ от пространственного является наличие не просто более одной плоскости вращения составляющих его зубчатых колёс, но наличие непараллельных плоскостей их вращения. Плоскости вращения звеньев в пространственном ПМ не обязаны быть строго перпендикулярны друг-другу и могут находиться под любыми произвольными углами. Примером пространственного ПМ может служить конический симметричный дифференциал, наподобие применяющегося в приводе ведущих колёс автомобиля. А вот близкий по конструкции цилиндрический дифференциал, применяющийся там же и выполняющий точно такие же функции, будет оставаться плоским ПМ.

Пространственные ПМ по своему функционалу ничем не отличаются от аналогичных по составу плоских ПМ. Выбор того или иного ПМ в качестве основы конкретной ПП есть лишь вопрос экономики или конструкторских предпочтений. Тот же простой межколёсный дифференциал почти всегда выполнен на основе пространственного ПМ не потому, что что плоский не годится, а, скорее, по определённым компоновочным соображениям. Плюс, как это ни странно, пространственный ПМ для выполнения схожих функций может требовать меньшего количества шестерён и деталей вообще. Так, тот же межколёсный дифференциал в пространственном варианте требует всего лишь 4 одинаковые шестерни, из которых две пойдут на два солнца и две — на два саттелита. В случае же плоского варианта, таких шестерён потребуется как минимум шесть, а скорее всего — восемь, и при этом они обязательно будут двух разных типоразмеров.

2 степени свободы ПМ

Уникальной особенностью любого ПМ, отличающей его от всех прочих зубчатых передач, является наличие у него двух степеней свободы. Применительно к простому трёхзвенному ПМ это означает, что понимание угловой скорости вращения любого одного основного звена не даёт однозначного понимания угловых скоростей двух других основных звеньев, даже если известны все передаточные отношения внутри ПМ. Здесь все три основных звена находятся в дифференциальной связи друг с другом и для определения их угловых скоростей надо знать угловые скорости как минимум двух из них. В этом есть важное отличие ПМ от прочих зубчатых механизмов, в которых угловые скорости всех элементов связаны линейной зависимостью, а по угловой скорости одного элемента всегда можно точно определить угловые скорости всех остальных элементов, сколь много их бы не было. И в этом есть основа уникальных свойств, присущих любому ПМ: способность изменять угловые скорости на выходе при неизменных угловых скоростях на входе, способность делить и суммировать потоки мощности и всё это при постоянно зацепленных шестернях.

Любой ПМ, независимо от того, простой он или сложный, имеет фактически лишь две степени свободы. Для простого ПМ это подтверждается и визуальным наблюдением за работой такого механизма и уравнением Чёбышева. Для сложных ПМ это визуально не очевидно, а уравнение Чёбышева теоретически может допускать существование для таких ПМ трёх степеней свобод, что подразумевает наличие четырёх звеньев, находящихся в дифференциальной связи друг с другом. Но фактически такие сложные ПМ будут физически неработоспособны в тех практических задачах, ради которых они создаются, а все работоспособные сложные ПМ останутся двухстепенными. Независимо от числа основных звеньев любого работоспособного сложного ПМ, в нём, так же как и в простом ПМ, в дифференциальной связи друг с другом будет находиться только три основных звена, а остальные основные звенья, сколько бы их ни было, будут иметь линейную связь с каким-то одним из трёх вышеупомянутых. Попытки же создания сложных ПМ с тремя (и тем более, с четырьмя) фактическими степенями свободы считаются бесперспективными, а все работоспособные трёх- и четырёхстепенные ПП основаны на сборке последовательно взаимозацепленных двухстепенных ПМ.

Передаточное отношение

Планетарная передача в режиме повышения скорости. Водило (зелёное) вращается внешним источником. Усилие снимается с солнечной шестерни (жёлтая), в то время как кольцевая шестерня (красная) закреплена неподвижно. Красные метки показывают вращение входного вала на 45°.

Передаточное отношение такой передачи визуально определить достаточно сложно, в основном, потому что система может приводиться во вращение различными способами.

При использовании планетарной передачи в качестве редуктора один из трёх её основных элементов фиксируется неподвижно, а два других служат в качестве ведущего и ведомого. Таким образом, передаточное отношение будет зависеть от количества зубьев каждого компонента, а также от того, какой элемент закреплён.

Рассмотрим случай, когда водило зафиксировано, а мощность подводится через солнечную шестерню. В этом случае планетарные шестерни вращаются на месте со скоростью, определяемой отношением числа их зубьев относительно солнечной шестерни. Например, если мы обозначим число зубьев солнечной шестерни как S{\displaystyle S}, а для планетарных шестерён примем это число как P{\displaystyle P}, то передаточное отношение будет определяться формулой SP{\displaystyle {\frac {S}{P}}}, то есть если у солнечной шестерни 24 зуба, а у планетарных по 16, то передаточное отношение будет −2416{\displaystyle -{\frac {24}{16}}}, или −32{\displaystyle -{\frac {3}{2}}}, что означает поворот планетарных шестерён на 1,5 оборота в противоположном направлении относительно солнечной.

Далее вращение планетарных шестерён может передаваться кольцевой шестерне, с соответствующим передаточным числом. Если кольцевая шестерня имеет A{\displaystyle A} зубьев, то оно будет вращаться с соотношением PA{\displaystyle {\frac {P}{A}}} относительно планетарных шестерён. (В данном случае перед дробью нет минуса, так как при внутреннем зацеплении шестерни вращаются в одну сторону). Например, если на кольцевой шестерне 64 зуба, то относительно приведённого выше примера это отношение будет равно 1664{\displaystyle {\frac {16}{64}}}, или 14{\displaystyle {\frac {1}{4}}}. Таким образом, объединив оба примера, мы получим следующее:

  • Один оборот солнечной шестерни даёт −SP{\displaystyle -{\frac {S}{P}}} оборотов планетарных шестерён;
  • Один оборот планетарной шестерни даёт PA{\displaystyle {\frac {P}{A}}} оборотов кольцевой.

В итоге, если водило заблокировано, общее передаточное отношение системы будет равно −SA{\displaystyle -{\frac {S}{A}}}.

В случае, если закреплена кольцевая шестерня, а мощность подводится к водилу, передаточное отношение на солнечную шестерню будет меньше единицы и составит 1(1+AS){\displaystyle {\frac {1}{(1+{\frac {A}{S}})}}}.

Если закрепить кольцевую шестерню, а мощность подводить к солнечной шестерне, то мощность должна сниматься с водила. В этом случае передаточное отношение будет равно 1+AS{\displaystyle 1+{\frac {A}{S}}}. Это самое большое передаточное число, которое может быть получено в планетарной передаче. Такие передачи используются, например, в тракторах и строительной технике, где требуется большой крутящий момент на колёсах при невысокой скорости.

Всё вышесказанное можно описать следующими двумя уравнениями (выведены из условия отсутствия проскальзывания сопрягаемых шестерён и следовательно равенства дуг, проходимых точками, находящихся на окружностях, в единицу времени):

A(ωa−ωc)=PωpS(ωs−ωc)=−Pωp{\displaystyle {\begin{aligned}A\left(\omega _{a}-\omega _{c}\right)=P\omega _{p}\\S\left(\omega _{s}-\omega _{c}\right)=-P\omega _{p}\end{aligned}}}

Здесь ωa,ωc,ωp,ωs{\displaystyle \omega _{a},\omega _{c},\omega _{p},\omega _{s}} — угловые скорости соответственно: кольцевой шестерни, водила, планетарных шестерён относительно водила, и солнечной шестерни. Первое уравнение характеризует вращение водила относительно кольцевой шестерни, второе — солнечной шестерни относительно водила.

Если исключить из уравнений ωp{\displaystyle \omega _{p}} путём их сложения — получится одно уравнение: Aωa+Sωs=(A+S)ωc{\displaystyle A\omega _{a}+S\omega _{s}=(A+S)\omega _{c}}. Так как числа зубьев шестерён всегда удовлетворяют условию A=S+2P{\displaystyle A=S+2P} (исходя из простых геометрических соотношений, поскольку в диаметр коронной шестерни помещается диаметр солнечной шестерни и два диаметра сателлитов), по-другому это уравнение можно записать как:

(2+n)ωa+nωs−2(1+n)ωc=0{\displaystyle \left(2+n\right)\omega _{a}+n\omega _{s}-2\left(1+n\right)\omega _{c}=0}

Где n — это параметр передачи, равный n=SP{\displaystyle n={S \over P}}, то есть отношению чисел зубьев солнечной и планетарных шестерён.

В нижеуказанной таблице (указывающей выходные скорости различных типов планетарных передач в зависимости от их конструктивных особенностей) приняты следующие условные обозначения:

Формула Виллиса

i0=nP−nSnP−nA{\displaystyle i_{0}={n_{P}-n_{S} \over n_{P}-n_{A}}}, где i0{\displaystyle i_{0}} — передаточное число при заблокированном водиле i0=nSnA=−NANS{\displaystyle i_{0}={n_{S} \over n_{A}}=-{N_{A} \over N_{S}}}, nS{\displaystyle n_{S}} — скорость солнечной шестерни, nP{\displaystyle n_{P}}- скорость водила и nA{\displaystyle n_{A}} — скорость кольцевой шестерни. [2][3]

Управляющие элементы планетарной передачи

Наличие у любых ПМ и их сборок двух и более степеней свободы может использоваться в некоторых типах ПП в качестве основного функционала (здесь имеются в виду планетарные дифференциалы, разветвители потоков и суммирующие ПП). Однако для работы ПП в режиме редуктора с одним ведущим звеном и одним ведомым всем остальным свободным основным звеньям необходимо задать определённую угловую скорость (в том числе, возможно, нулевую). Лишь в таком случае лишние степени свободы будут сняты, все свободные основные звенья станут опорными, а вся подающаяся на единственное ведущее звено мощность будет снята с единственного ведомого в полном объёме (с поправкой на КПД ПП). Функцию задания необходимых угловых скоростей свободным звеньям выполняют так называемые управляющие элементы ПМ. Таковых элементов два: фрикционы и тормоза.

  • Фрикционы соединяют друг с другом два свободных звена ПМ, либо соединяют свободное звено с внешним подводом мощности. В обоих случаях при полной блокировке фрикционы обеспечивают паре соединённых элементов некую одинаковую ненулевую угловую скорость. Конструктивно обычно выполнены в виде многодисковых фрикционных муфт, хотя в отдельных случаях возможны и более простые муфты.
  • Тормоза соединяют свободные звенья ПМ с корпусом ПП. При полной блокировке тормоза обеспечивают заторможенному свободному звену нулевую угловую скорость. Конструктивно могут быть аналогичны фрикционам — в виде многодисковых фрикционных муфт; но широко распространены и более простые конструкции — ленточные, колодочные, однодисковые.

Фрикционы и тормоза по принципу своего действия являются идеальными синхронизаторами угловых скоростей соединяемых элементов. Также они выполняют предохранительные функции и при резких ударных нагрузках могут пробуксовывать, переводя динамические нагрузки в работу сил трения. И также они могут выполнять функцию главной муфты сцепления (главного фрикциона), поэтому зачастую в механических трансмиссиях машин с ПКП главная муфта сцепления вообще не применяется. При том, что тормоза в отличие от фрикционов допускают больше вариантов фактического исполнения, конструкция и тех и других может быть совершенно одинаковой, или, по крайней мере, унифицированной, несмотря на существенное функциональное различие фрикционов и тормозов. Помимо фрикционов и тормозов в работе ПП могут быть задействованы автоматически срабатывающие механизмы свободного хода (другое их название — обгонные муфты или автологи). В русскоязычных кинематических схемах планетарных КП фрикционы, тормоза и муфты свободного хода обычно обозначаются буквами Ф, Т и М.

Применение

Наиболее широкое применение принцип нашёл в планетарных редукторах, автомобильных дифференциалах, бортовых планетарных передачах ведущих мостов тяжёлых автомобилей, кроме того, используется в суммирующих звеньях кинематических схем металлорежущих станков, также в редукторах привода воздушных винтов турбовинтовых двигателей (ТВД) в авиации, также довольно распространены планетарные втулки для велосипедов.

В современных устройствах могут использоваться каскады из нескольких планетарных передач для получения большого диапазона передаточных чисел. На этом принципе работают многие автоматические коробки передач.

Часто планетарные передачи используются для суммирования двух потоков мощности (например, планетарные ряды двухпоточных трансмиссий некоторых танков и др. гусеничных машин), в этом случае неподвижно зафиксированных элементов нет. Например, два потока мощности могут подводиться к солнечной шестерне и эпициклу, а результирующий поток снимается с водила. Широко применяется данная схема в авиации: в приводе постоянных оборотов электрогенератора планетарный механизм используется для сложения двух различных входных частот вращения с целью получения стабильной выходной. В авиационных электро- и гидроприводах для надёжности используются два мотора, работающие на общий выходной вал через планетарный редуктор, и при отказе одного мотора или цепи управления им работоспособность привода сохраняется, но с двойным уменьшением частоты вращения.

Планетарные передачи также используются в случаях, когда необходимо переменное передаточное отношение (может быть достигнуто торможением, например, водила).

Планетарный механизм поворота

ПМП применяются на гусеничных тракторах и танках для изменения скорости и поворота. В этом случае в трансмиссии к левому и правому ведущим колёсам устанавливается свой планетарный редуктор, коронная шестерня которого приводится от двигателя, с водила передаётся момент на колесо, а солнечная шестерня связана с тормозом той или иной конструкции (как правило, ленточным). Также между коронной шестернёй и выходным валом установлен так называемый блокировочный фрикцион, а на выходном валу (от водила) — ещё один тормоз.

Если тормоз солнечной шестерни и фрикцион выключены, то момент на ведущее колесо трактора не передаётся — корона через сателлиты вращает расторможенную солнечную шестерню, практически не создавая момента на водиле. Для исключения движения трактора в этом случае может быть заторможен основной тормоз (на выходном валу). Если начать затормаживать солнечную шестерню, то сателлиты получат точку опоры и начнут создавать момент на водиле, вращая ведущее колесо трактора. При полностью заторможенной солнечной шестерне ПМП работает как обычный понижающий редуктор. Это первая передача ПМП. При включении блокировочного фрикциона он начнёт передавать момент от двигателя напрямую на водило, минуя редуктор, и при полном включении фрикциона редуктор ПМП будет полностью выведен из работы (заблокирован) — это вторая передача ПМП, работа в качестве прямой передачи.

Таким образом, включение тормоза водила даёт остановку трактора, включение тормоза солнечной шестерни — первую (понижающую) передачу, включение блокировочного фрикциона — вторую.

Преимущества и недостатки

Конструкция передачи со многими сателлитами обеспечивает зацепление большего числа зубцов и потому меньшую нагрузку на каждый зубец. Это позволяет достичь меньших размеров и массы по сравнению с обычной передачей при той же передаваемой мощности.

Соосность ведущих и ведомых валов облегчает компоновку машин и каскадных механизмов.

Сбалансированность сил в передаче приводит к меньшему уровню шума.

Конструкция передачи позволяет достичь больших передаточных отношений при малом числе колёс.

К недостаткам планетарных передач относят повышенные требования к точности изготовления и сборки, а также малый КПД при больших передаточных отношениях.

См. также

Литература

  • Антонов А. С., Артамонов Б. А., Коробков Б. М., Магидович Е. И. Планетарные передачи // Танк. — М.: Воениздат, 1954. — С. 422—429. — 607 с.
  • Ткаченко В. А. Проектирование многосателлитных планетарных передач / Харьковский государственный университет им. А. М. Горького. — Харьков: Изд-во Харьк. университета, 1961. — 186 с. — 7000 экз.
  • Кудрявцев В. Н. и др. Планетарные передачи: Справочник / Авт.: В. Н. Кудрявцев, Ю. Н. Кирдяшев, Е. Г. Гинзбург, Ю. А. Державец, А. Н. Иванов, Е. С. Кисточкин, И. С. Кузьмин, А. Л. Филипенков; Под ред. докторов техн. наук В. Н. Кудрявцева и Ю. Н. Кирдяшева. — Л.: Машиностроение. Ленингр. отд-ние, 1977. — 536 с. — 39 000 экз.

Ссылки

Примечания

  1. ↑ Pattantyús Gépész- és Villamosmérnökök Kézikönyve 3. tom. Műszaki Könyvkiadó, Budapest, 1961. p.632.
  2. Bernd Künne. Köhler/Rögnitz Maschinenteile 2. — Vieweg+Teubner Verlag, 2008. — С. 508. — ISBN 3835100920.
  3. Berthold Schlecht. Maschinenelemente 2: Getriebe, Verzahnungen und Lagerungen. — Pearson Studium, 2010. — С. 787. — ISBN 3827371465.

wikiredia.ru

Планетарная коробка передач подробно — Энциклопедия журнала «За рулем»

Планетарная механическая коробка передач (МКП) — разновидность коробки передач, в которой используются планетарные механизмы. Была распространена в начале ХХ столетия (автомобиль Ford T), в наше время получила достаточно широкое распространение в гусеничной технике — военной и гражданской, а также на велосипедах и в автомобилях с гибридной трансмиссией.

Устройство и принцип работы

В планетарной МКП используется система шестерен-сателлитов, вращающихся вокруг центральной солнечной шестерни. Чаще всего сателлиты размещены внутри большой коронной шестерни (эпицикла), с которой находятся в постоянном зацеплении. В свою очередь сателлиты закреплены на водиле.
Изменение передаточного отношения планетарной МКП зависит от того, какой из трех основных элементов — солнечная шестерня, сателлиты с водилом и коронная шестерня — закреплен неподвижно, на какой подается крутящий момент и с какого элемента снимается трансмиссией. В любом случае один из трех основных элементов планетарной коробки (а сателлиты рассматриваются как одно целое с водилом) будет неподвижен, два других будут вращаться. Для остановки и блокировки одного из элементов КП используется система ленточных тормозов и блокировочных муфт. Но есть планетарные механизмы, в которых тормоза и муфты отсутствуют — речь идет о дифференциалах, которые тоже относятся к планетарным механизмам, построенным с применением конических шестерен.
Вариантов планетарных систем, применяемых в МКП, достаточно много. Описание принципа работы касается простейшей системы с тремя сателлитами, закрепленными на водиле под углом в 120 градусов.
Понижающая передача. Первый вариант. Если остановить эпицикл, крутящий момент от двигателя подавать на вал солнечной шестерни, а снимать крутящий момент с водила, то в результате частота вращения вала водила будет меньше, чем частота вращения солнечной шестерни.
Второй вариант. Если подать вращающий момент вала двигателя на эпицикл, заблокировать солнечную шестерню, а крутящий момент снимать с водила, получится тот же эффект (но с передаточным числом близким к единице).
Повышающая передача. Первый вариант. Эпицикл заблокирован, крутящий момент подается на водило с сателлитами, а снимается с центральной солнечной шестерни. В результате КП работает в качестве повышающего редуктора.
Второй вариант. Солнечная шестерня блокирована, крутящий момент подается на водило, снимается с большой коронной шестерни. Эффект получается такой же, КП работает в режиме повышающей передачи.
Задний ход. Первый вариант. Крутящий момент подается на солнечную шестерню, снимается с эпицикла, водило закреплено неподвижно. С этом случае КП работает в качестве редуктора с отрицательным передаточным отношением, то есть включен режим реверса крутящего момента.
Второй вариант. Крутящий момент подается на эпицикл, снимается с вала солнечной шестерни, водило, опять же, закреплено неподвижно. КП работает в реверсивном режиме с отрицательным передаточным отношением.

Применение планетарных МКП

В автомобильном транспорте МКП с ручным (а точнее, с ножным) управлением вышли из употребления еще в 1928 году — с прекращением выпуска легендарного автомобиля марки Ford T. В этой машине применялась планетарная механическая двухступенчатая коробка передач. При этом переключение передач производилось педалями, которые включали ленточные тормоза коробки. Первая передача включалась нажатием на правую педаль, вторая — на среднюю и задний ход — на левую педаль (всего было три педали, вместо педали «газа» использовался подрулевой рычаг).
В 30-е и последующие годы МКП была вытеснена полуавтоматическими и автоматическими планетарными КП. В полуавтоматах вместо сцепления использовались гидромуфты, в автоматах — гидротрансформаторы.

Планетарный редуктор

Сегодня планетарные МКП широко используются в гусеничной технике, в том числе и военной — в танках, тягачах, транспортерах. В авиационных турбинах, в металлорежущих станках — в качестве редукторов.

Очень популярны планетарные механический коробки передач, встроенные в заднюю втулку велосипедного колеса. Эти коробки легки, долговечны, эффективны и просты в эксплуатации, поскольку не требуют какого-либо обслуживания. В то же время они повышают стоимость велосипедов и не применяются в спортивных моделях — из-за большой массы (порядка 1,5-2 кг) и меньшей ремонтопригодности по сравнению с открытыми устройствами перевода цепи параллелограммного типа.

Достоинства и недостатки планетарных КП

К достоинствам планетарных коробок следует отнести компактность. Все детали планетарной КП вращаются вокруг одной оси. В них нет валов, ползунов и последовательно расположенных шестерен. В результате такая коробка занимает примерно столько же места, сколько одно-двухдисковое сцепление.
В то же время планетарные коробки способны передавать очень большой крутящий момент, что обуславливает их применение в тяжелой (в частности, танковой) технике. Эта особенность объясняется тем, что крутящий момент равномерно распределяется на сателлиты (которых может быть больше трех), зубья которых испытывают меньшие по сравнению с двух-трехвальными КП механические нагрузки. Планетарные коробки отличаются повышенным ресурсом и простотой обслуживания.
Конструкция планетарных коробок позволяет легко организовать систему управления — оснастить элементы КП ленточными тормозами и блокировочными муфтами (поясним: первые нужны для плавной остановки вращения шестерен, вторые — для окончательной блокировки и, соответственно, переключения передачи).
Наконец, правильно спроектированная планетарная КП с верно подобранным передаточным отношением шестерен имеет более высокий коэффициент полезного действия, чем двух-трехвальные механические КП.
Но вместе с тем есть у планетарных коробок и недостатки. Главный из них — сложность с проектирования и производства многоступенчатых КП. В автоматических коробках для получения трех и более ступеней переключения приходится прибегать к каскадным планетарным системами. Это усложняет КП и, соответственно, снижает ее КПД и надежность.
В наши дни наработки в области планетарных автомобильных коробок передач используются в производстве автоматических планетарных коробок, которые полностью вытеснили механические КП этого типа. Вместе с полуавтоматическими и бесступенчатыми трансмиссиями (прежде всего, с вариаторными системами) АКП широко используются в легковых автомобилях среднего и высокого класса. Благодаря эксплуатационным удобствам АКП пользуются повышенной популярностью и постепенно вытесняют механические КП с ручным управлением из автомобилей бюджетного класса.

wiki.zr.ru

Автозагадка: Механик. ч.2: ru_auto — LiveJournal

Это ответ на вчерашнюю Автозагадку.

mech_title3

Лучший ответ, наиболее полно описывающий последовательность повреждений, дал das_gloom . Так же верный ответ дал son_of_anarchy , кроме того он в целом верно объяснил, что это ошибка производителя. Однако причину возникновения первичного дефекта никто правильно не указал. Так что кина приза не будет. Зато будет подробное объяснение и многобукв.


Но в начале краткие ответы на вопросы загадки. Потом будут разъяснения и размышления.

Краткие ответы

1. Что явилось первичным дефектом, повлекшим разрушение механизма?

Заклинивание сателлита на оси является  первичным дефектом, приведшем  к появлению последующих дефектов.

Разрушение ступичной части ведомого диска с наибольшей вероятностью так же вызвано заклиниванием сателлита и возникшим в результате этого ударом в трансмиссии.


Локальные  следы перегрева в виде следов побежалости на рабочих поверхностях маховика и нажимного диска корзины сцепления не имеют непосредственного отношения к заклиниванию сателлита.

2. Что является причиной возникновения первичного дефекта?

Причиной возникновения первичного дефекта «заклинивания сателлита на оси» является работа подшипника в условиях граничного трения, вызванного недостатком смазки в зоне образования масляного клина при вращении с относительно  большой угловой скоростью .

3. В допустимом ли режиме происходила эксплуатация деталей, приведшая к появлению дефектов?

К появлению первичного дефекта «заклинивания сателлита на оси» привела эксплуатация  дифференциала в режиме, при котором происходит вращение сателлитов с большой угловой скоростью, таким режимом  является пробуксовка одного колеса, когда одно колесо стоит или медленно катится, а другое вращается с большой скоростью. Пробуксовка  является допустимым режимом эксплуатации автомобиля (Например, зимой во время разгона, когда одно колесо попадает на лёд, или летом когда одно колесо попадает на скорости в лужу и появляется эффект аквапланирования).

4. Если возможно, как устранить причины появления дефектов?

Для устранения причины появления граничного трения в подшипнике шестерни сателлита, необходимо выполнить определённые конструктивные мероприятия, обеспечивающие   подачу достаточного количества масла в зону масляного клина.  Наиболее известными конструктивными мероприятиями являются  сверления в шестерне сателлита, либо  маслоподающие  канавки на поверхности вала сателлитов, как, например, в дифференциале ВАЗ-2108.

5. Какой характер носит причина появления дефектов: эксплуатационный или конструктивный?

Причина появления дефектов является работа подшипника в условиях граничного трения, эта причина заложена в конструкции узла и, соответственно, носит конструктивный характер.Многобукв

Исследование контактных следов на корпусе дифференциала и оси сателлитов позволило установить, что повреждения возникли в момент частичного выхода оси сателлитов из корпуса дифференциала .

Вышедшая из вращающегося корпуса ось зацепилась за детали коробки передач, в результате чего произошёл удар в трансмиссии и изгибание оси сателлитов.От выхода из корпуса ось сателлитов удерживается  фиксирующим штифтом.

Характер разрушения штифта характерен для среза

4

По направлению среза удалось установить, что срез штифта вызван  проворотом  оси сателлитов. Причиной проворота оси сателлитов является заклинивание одного из сателлитов на оси. Следы заклинивания в виде задиров и переноса металла имеются на наружной  поверхности оси сателлитов и внутренней поверхности одного сателлита. Таким образом, заклинивание сателлита на оси явилось первичным дефектом,  приведшем к дальнейшим разрушениям. Повреждения зубьев шестерней привода  полуосей вызвано ударом, возникшим в трансмиссии в момент зацепления оси сателлит за детали коробки передач. Разрушение ступичной части ведомого диска, с наибольшей вероятностью, так же вызвано ударом в трансмиссии. Локальные  следы перегрева в виде следов побежалости на рабочих поверхностях маховика и нажимного диска корзины сцепления, не имеют непосредственного отношения к заклиниванию сателлита и последствиям этого. Данные следы свидетельствуют о тяжёлых условиях эксплуатации сцепления и могу иметь к поломкам только косвенное отношение.Наружная поверхность вала сателлитов и внутренняя поверхность сателлита представляют собой подшипник трения. Для того, чтобы понять причину заклинивания пошипника,  необходимо разобраться в различных видах трения, возникающих в подшипнике.

Граничное трение —  толщина смазывающего слоя меньше микронеровностей. Трущиеся поверхности разделены тончайшими пленками (не больше 1 мкм), которые образуются в результате адсорбции.

Жидкое трение —  трущиеся поверхности полностью разделены смазочным слоем. Этот режим реализуется при одновременном выполнении следующих условий:
а) скорость скольжения должна быть выше критической
б) должен иметься клиновый зазор между поверхностями, в) направление скорости должно быть перпендикулярно контактной линии. Возникающее при этих условиях гидродинамическое давление создает подъемную силу, которая и разделяет движущиеся поверхности. Изнашивание при этом минимально. Коэффициент трения уже не зависит от материала сопряженных поверхностей, а определяется трением смазочного материала о твердые поверхности и возрастает с ростом скорости.

Полужидкое трение — толщина смазывающего слоя недостаточна для полного разделения поверхностей.  Это смешанный режим, когда часть поверхности испытывает  граничное, а другая часть – жидкое трение. То есть, непосредственное взаимодействие поверхностей частично сохраняется. При этом в локальных клиновых зазорах, образованных микронеровностями, возникает гидродинамический эффект. С ростом скорости вклад гидродинамического давления увеличивается, толщина смазывающего слоя растет. В режиме полужидкостной смазки коэффициент трения уменьшается с ростом скорости.

Таким образом, режим граничного трения является самым неблагоприятным для работы подшипника. Как отмечалось выше, недостаток смазки при граничном трении приводит к контактному взаимодействию выступов на поверхности вала и поверхности  отверстия, в результате чего происходит пластическая деформация выступов, что вызывает  локальный разогрев. В этих условиях защитная пленка разрушается, и материалы трущихся поверхностей свариваются в области контакта микровыступов. За счет относительного движения поверхностей образовавшиеся «мостики» разрываются.  В результате происходит задирание (вырывание приварившихся частиц) и перенос частиц материала с одной поверхности на другую. При большой площади схватывания внешняя сила может оказаться недостаточной для разрыва схватившихся поверхностей , и тогда движение деталей пары трения прекращается, происходит так называемое  заклинивание.

В исследуемом   случае на поверхности вала и в  отверстии сателлита наблюдаются все признаки граничного трения, задиры, перенос материала и последующее заклинивание подшипника. Однако картер дифференциала и расположенные в нём сателлиты находятся в масляной ванне и, следовательно, не должны испытывать недостаток в масле, способный вызвать граничное трение.

Если рассмотреть внутреннюю поверхность сателлита, то нетрудно заметить, что задиры и следы граничного трения расположены в средней части подшипника, приблизительно на равном удалении от торцев подшипника:

016

Следовательно, только средняя часть, удалённая от  краёв, испытывала недостаток смазки.

При вращении сателлита на валу масло в подшипник подаётся через торцы подшипника и затем через зазор проникает внутрь. При вращении под действием внешних сил вал занимает в подшипнике эксцентрическое положение и увлекает масло в зазор между ним и подшипником:

026В результате чего создаётся так называемый масляный клин, который обеспечивает жидкое трение. Условия сохранения жидкого трения-  это постоянная подача масла в зону образования клина и вращение вала относительно подшипника. При этом увеличение скорости вращения приводит к увеличению количества масла прокачиваемого через масляный клин. Поскольку подача масла происходит через постоянный зазор между валом и подшипником, то, следовательно, его количество, поступающее в подшипник, также постоянно и зависит только от вязкости масла.

Таким образом, при определённой скорости вращения сателлитов количество масла способного пройти через зазор будет недостаточно для образования полноценного масляного клина. Поскольку подача масла осуществляется от торцев к центру подшипника, то первым перейдёт в режим граничного трения средняя часть подшипника. Именно таким образом в результате вращения  сателлита с относительно большой для данного подшипника скоростью  и произошло  заклинивание сателлита на валу по причине работы подшипника в условиях граничного трения.

Вращение сателлитов в дифференциале происходит вследствие разной скорости вращения левого и правого колеса. Основной причиной чего является  движение в поворотах, однако такой режим не приводит к появлению высоких угловых скоростей вращения сателлитов. Режимом, при котором происходит вращение сателлитов с большой угловой скоростью, является пробуксовка одного колеса, когда одно колесо стоит или медленно едет, а другое вращается с большой скоростью. Пробуксовка не является аномальным режимом эксплуатации. Такой режим может появиться не только при езде по бездорожью, но и при движении по дорогам с твёрдым покрытием.

Например, зимой во время разгона, когда одно колесо попадает на лёд, или летом когда одно колесо попадает на скорости в лужу и появляется эффект аквапланирования. При таких режимах за короткое время колесо может раскрутиться до высоких оборотов, а если после этого оно попадает на асфальт, то в дополнение происходит удар в трансмиссии, который может только усилить нагрузку на подшипник.

Таким образом, появление пробуксовки на дороге с твёрдым покрытием не является нарушением правил эксплуатации, и поэтому детали автомобиля должны выдерживать нагрузки, возникающие при таком режиме эксплуатации. Поэтому заклинивание сателлита на валу не может являться эксплуатационным дефектом. Такое заклинивание происходит, как сказано выше, вследствие недостаточного количества масла в зоне масляного клина.

Для обеспечения необходимого количества масла в зоне масляного клина необходимо выполнить определённые мероприятия, обеспечивающие его  подачу.  Наиболее известными конструктивными мероприятиями являются  сверления в шестерне сателлита, либо  маслоподающие  канавки на поверхности вала сателлитов, как, например, в дифференциале ВАЗ-2108.

7

Отсутствие конструктивных мероприятий, обеспечивающих подачу масла в зону масляного клина подшипника шестерни дифференциала,  является конструктивным дефектом.

Размышления

1. son_of_anarchy дал верный коментарий, но дело в том, что масла было предостаточно. Смазку ведь ещё и подвести нужно правильно. А что масла достаточно ещё не означает, что оно в зоне контакта. Так что это конструкторская недоработка.

Масло было нормальным. Был полный дифференциал масла: сам дифференциал целый, шестерни целы, подшипники изумительные. Нет следов масляного голодания. И вдруг у тебя явные следы масляного голодания на двух парах трения. Да, понятно, что это было во время буксования: одно колесо стояло, другое вращалось. И поломка  случилась зимой, во время буксования, очевидно, достаточно сильного. Не учли немцы эксплуатацию автомобиля в наших условиях. У нас буксовка на льду — обычная ситуация на наших дорогах, в наших дворах.  Да и масло с утра загустевшее. В альтернативных конструкциях эта проблема учтена. См. выше. На старых ауди есть такие канавки.

2. Есть такое предубеждение, что если это не жигули, а Фольксваген (а это именно Фольксваген), то инженеры там просто ангелы: они просто не могут ошибиться. Это не совсем так.

Спасибо за ответы. Инженеры в ру_авто есть. Может будет ещё одна загадка в августе.

ru-auto.livejournal.com

Дифференциал автомобиля — предназначение, устройство, как работает

Дифференциал – один из важнейших элементов трансмиссии автомобиля. Его основное предназначение заключается в распределении, изменении и передачи крутящего момента, а при необходимости, для обеспечения вращения двух потребителей с различными угловыми скоростями.

Межколесный дифференциал – это дифференциал, предназначенный для привода ведущих колес, если же он установлен между ведущими мостами в полноприводном автомобиле – межосевой интервал.

Как правило, дифференциал автомобиля располагается в следующим местах:

  • Привод ведущих мостов в полноприводном автомобиле – в раздаточной коробке
  • Привод ведущих колес в полноприводном автомобиле – в картере заднего и переднего моста
  • Привод ведущих колес в переднеприводном автомобиле — в коробке передач
  • Привод ведущих колес в заднеприводном автомобиле – картер заднего моста

В основе дифференциала лежит планетарный редуктор. Используемый в редукторе вид зубчатой передачи условно делит дифференциал на три следующих вида:

  • Червячный
  • Цилиндрический
  • Конический

Червячный – самый универсальный дифференциал и может быть установлен как между осями, так и между колесами. Цилиндрический тип, как правило, располагается в полноприводных автомобилях между осями. Конический тип применяется в основном как межколесный.

Различают также несимметричный и симметричный дифференциалы автомобиля. Несимметричный тип устанавливается между двумя приводными осями и позволяет передавать крутящий момент в различных пропорциях. Симметричный тип, как правило, устанавливается на главных передачах и позволяет передает на два колеса равный по значению крутящий момент.

Устройство автомобильного дифференциала

Основными элементами дифференциала являются:

  • Полуосевые шестерни
  • Шестерни сателлитов
  • Корпус

Схема дифференциала переднеприводного автомобиля:
1 — ведомая шестерня главной передачи; 2 — фрагмент ведущей шестерни главной передачи; 3 — ось сателлитов; 4 — сателлит; 5 — корпус дифференциала; 6 — правый фланцевый вал; 7 — сальник; 8 — конический роликовый подшипник; 9 — полуосевая шестерня; 10 — левый фланцевый вал; 11 — фрагмент картера коробки передач.

Шестерни сателлитов по своему принципу работы напоминают планетарный редуктор и служат для соединения между собой корпуса и полуосевой шестерни. Последние в свою очередь соединяются с помощью шлицов с ведущими колесами. В различных конструкциях используются четыре или два сателлита, в легковых автомобилей чаще используется второй вариант.

Чашка дифференциала или корпус – ее основное предназначение заключается в том, чтобы передавать через сателлиты крутящий момент от главной передачи к полуосевым шестерням. Внутри него располагаются оси для вращения сателлит.

Солнечные или полуосевые шестерни – предназначены для передачи крутящего момента с помощью полуосей на ведущие колеса. Левая и правая шестерни могут иметь как одинаковое, так и различное между собой число зубцов. В свою очередь шестерни с различным число зубов используются для образование несимметричного дифференциала, а с одинаковым количеством – для симметричного.

Принцип работы автомобильного дифференциала

Работает дифференциал следующим образом: вращая одно из ведущих колес автомобиля, второе начнет вращаться в противоположном направлении, но при этом должно выполняться условие неподвижности карданного вала. В данном случае стеллиты вращаются в свих осях, играя роль шестерни.

Если завести двигатель и включить сцепление и любую из передач, начнет свое вращение карданный вал, передающий свой крутящий момент через цилиндрические и конические шестерни коробке дифференциала.

Таким образом, во время движения автомобиля по кривой траектории одно колесо замедляет свой ход, второе наоборот увеличивает его. В результате устраняется пробуксовка и скольжение колес и каждое из них вращается с той скоростью, которая необходима для безопасного движения.

Во время движения автомобиля по прямой, ничего особенного не происходи и дифференциал передает крутящий момент на оба колеса в одинаковом соотношении. Шестерни полуосевые вращаются с одинаковой угловой скоростью, так как сателлиты в этом случае находятся в неподвижном состоянии.

При движении на скользких покрытиях дифференциал обладает одним существенным недостатком – он может вызвать боковой занос машины, так как на буксующем колесе низкая сила сцепления с покрытием и оно начинает вращаться в холостую.

Самые простейшие дифференциалы автомобиля обладают еще одним недостатком. При попадании грязи или прочих сторонних элементов между шлицами крутящий момент может передаваться в различном соотношении, даже 0 к 100. Таким образом, одно колесо останется в абсолютно статичном положение.

Современные модели практически лишены данного недостатка. Их устройство отличается ручной или автоматической более жесткой блокировкой. Более того, во многих легковых современных машинах устанавливаются системы стабилизации и курсовой устойчивости, позволяющие оптимизировать в зависимости от траектории движения автомобиля распределение крутящего момента.

Как работает дифференциал — видео:

На этом всё, теперь вы знаете устройство дифференциала.

Загрузка…

avto-i-avto.ru

Leave a Comment

Ваш адрес email не будет опубликован. Обязательные поля помечены *