Машина искусственный интеллект – Представитель «Яндекса» рассказал в Совфеде об искусственном интеллекте. И намекнул на закон для беспилотных автомобилей — Технологии на TJ
Беспилотные авто и машины с искусственным интеллектом на CES
В этом году на CES 2017, как ни странно, наиболее интересные технологии представляли производители авто. Машина перестает быть просто средством передвижения и превращается в самый настоящий гаджет. Автомобили наполнены кучей электроники и порой перестают напоминать внешне привычные нам машины. Беспилотные авто — вообще особая тема. Технологии автоматического управления автомобилем тестируют и пытаются внедрить многие компании. Также популярно становится и внедрение искусственного интеллекта в автомобиль. Все это довелось увидеть на CES 2017.
Toyota Concept-i
Например, Toyota показала на CES 2017 собственное видение будущего автомобилей — Concept-i. Главная фишка Concept-i не автономность, а наличие в автомобиле искусственного интеллекта Yui. Основная цель такой машины с собственным интеллектом — сделать процесс езды и взаимодействия автомобиля и человека проще. Хотя куда уж проще? Дави на педали и смотри на дорогу. Но в Toyota по своему видят будущее, где умный помощник Yui буквально будет ощупывать вас, ведь он умеет не только связываться с водителем посредством голоса или цветовых оповещений, но и с помощью тактильной отдачи. Yui буквально может к вам прикоснуться. Звучит зловеще, но так в Toyota представляют себе будущее. Конечно Concept-i может ездить и автономно, но главное заключается именно в поддержке водителя. Искусственный интеллект способен считывать эмоции человека. И если он заметит, что водитель становится рассеянным, то заведет с ним беседу или другим способом даст понять, что пора отдохнуть.
Divergent Blade
Немного по-другому видят ближайшие лет 10-15 ребята из команды Divergent 3D. Как понятно из названия, компания специализируется на 3D печати. Печати автомобилей! Их детище, Divergent Blade является суперкаром и способен разгоняться до 100 км/ч всего за 2,5 секунды. Ездит этот автомобиль на газе или бензине, но при этом является гораздо более экологичным транспортом чем электромобили. А все потому, что распечатанный на 3D принтере Blade несет на 65% меньше вреда экологии, чем собранный на конвейере электромобиль. Интересно и то, что Blade это не только распечатанный на принтере кузов, что уже далеко не новость, но и шасси. Основа автомобиля тоже распечатана на 3D принтере и состоит из 28 килограмм алюминия и 19 кг карбона. На сборку этого шасси понадобится 30 минут и три человека. Кстати, полностью Divergent Blade весит 630 кг, а двигатель который устанавливается в этот имеет мощность в 700 л/с, то есть больше чем 1 л/с на килограмм веса. Невероятный результат.
Беспилотные авто
Основная идея многих показанных на CES 2017 машин — автономное вождение. Мир буквально помешался на этой идее. Так свое видение беспилотного авто показала Honda. Ее NeuV рассчитана на двух человек и видится компании, как идеальный автомобиль для Uber. То есть такси без таксиста. Honda показали и самопередвижные табуретки, правда совсем непонятно зачем они вообще нужны. Также японцы продемонстрировали умный мотоцикл, который способен следовать за водителем или потихоньку катиться в пробке не теряя равновесия. Говорят, что все за счет умной начинки.
Hyundai решила шокировать внешностью, вернее ее обычностью, ведь представленный беспилотный автомобиль Ioniq ничем не отличается от самой обычной машины. Все сенсоры спрятаны внутри кузова. Корейцы, как бы дают понять, что их будущее немного ближе, чем у конкурентов.
BMW показала новую систему интерфейса HoloActive Touch, который должен будет использоваться в автомобилях в ближайшем будущем.
Электромобили
Второй главный тренд автомобилей на CES 2017 — электрическая силовая установка. Электрокары одним словом. Tesla своим появлением изменила этот мир и доказала, что электромобили это реальность. Поэтому крупные производители теперь пытаются так активно создать свои собственные электромобили. Например, Mercedes привезла на выставку концепт внедорожника EQ, который по словам компании уже готов к серийному производству и должен появиться в продаже в 2019 году. Силовая установка и аккумуляторы в этом автомобиле позволят ему от одной зарядки проехать 500 километров. Кстати, привыкайте к этой фразе «проехать на одной зарядке», скоро это станет нашей повседневной реальностью.
Это доказывает и Nissan, которые привезли на CES 2017 новое поколение электромобиля Leaf. Nissan не просто показали новый Leaf, они представили уникальную интеллектуальную систему SAM — Seamless Autonomous Mobility. Японцы планирует создать центр управления беспилотными авто — как NASA следит за своими кораблями, так и Nissan будут следить за беспилотными автомобилями. Встроенный в Leaf искусственный интеллект SAM способен самостоятельно разбираться со всеми дорожными ситуациями, но если вдруг он не сможет понять, как ему действовать дальше, то он обратится в центр управления. Он в свою очередь даст необходимые руководства по дальнейшим действиям. В общем Nissan пытается разобраться с проблемой адекватности автопилотов.
Ford решили не заморачиваться с созданием собственного умного помощника и обратились к Alexa — искусственному интеллекту от Amazon. Так вы сможете прямо из машины зажечь умную лампочку Philips Hue в доме или завести двигатель автомобиля удаленно, или включить дома кондиционер. Непонятно зачем это реально нужно когда есть смартфоны, Ford это не объяснили, но такая коллаборация выглядит как минимум интересно, ведь Alexa сегодня очень популярна в США.
Faraday Future FF91
А пока все пытаются создать электрокар с автопилотом и умным помощником будущего, ближе всего к реальности оказалась небольшая компания Faraday Future из Лос-Анджелеса. В прошлом году этот проект представлял на CES какой-то невероятно футуристичный концепт FFZero1, а уже в этом году Faraday представили практически серийный автомобиль FF91. На одной зарядке FF91 может проехать 608 км. При этом заряжаться может от любых типов зарядных станций. Суммарная мощность Faraday Future FF91 — 1050 лошадиных сил. Цифра впечатляющая. С нуля до сотни этот электромобиль разгоняется за 2,39 секунды, это на 0,01 быстрее чем Tesla Model S. Бойцовские качества спорткара этот автомобиль совмещает с утилитарностью минивэна. Помимо продвинутого автопилота и умного помощника внутри расположена куча дисплеев для водителя и всех пассажиров, целые системы сенсоров, камеры и Wi-Fi антенны. У каждого водителя FF91 будет собственная учетная запись, она позволит загружать все индивидуальные настройки электрокара — настройку кресел, руля, зеркал, приборов и так далее. Более продвинутая система памяти, которая есть в современных автомобилях. Производство Faraday Future FF91 начнется в 2018 году. Пока неизвестно даже примерно, сколько будет стоить этот электрический автомобиль, но уже можно встать в очередь заплатив $5000.
То что Faraday Future представляют свой серийный автомобиль не на автовыставке, а на CES 2017 говорит о том, что машина ближайшего будущего будет прежде всего гаджетом и лишь потом автомобилем.
Видео обзор автомобилей с выставки CES 2017
Заставь машину думать: как развивают искусственный интеллект у роботов :: РБК Тренды
Робототехника долгое время развивалась отдельно от искусственного интеллекта (ИИ), но сейчас перспектив у автоматизации без него нет. Аналитики Сбербанка рассмотрели практику применения ИИ при создании роботов
Понятие искусственного интеллекта неразрывно связано с робототехникой. По сути, робот — машина, умеющая воспринимать окружающую действительность, ее интерпретировать и действовать соответствующим образом, то есть думать.
Появление терминов «робот» и «искусственный интеллект» сильно разнесено по времени (1921 и 1956 годы соответственно), а за последние полвека пути развития двух областей то сходились, то расходились. Но сейчас прогресс вычислительных мощностей, солидный объем практических наработок и доступность информации вынуждают эти дисциплины вновь объединиться, пишут аналитики Сбербанка в ежегодном обзоре рынка робототехники за 2019 год.
Российский рынок роботов: угрозы и возможности
В определении авторов исследования ИИ — это способность программ и устройств интерпретировать данные, обучаться на них и использовать полученные знания для достижения целей, в том числе самостоятельно. В свою очередь ИИ делится на два типа:
- сильный ИИ — интеллект в широком смысле, способный решать задачи наравне с человеческим разумом;
- слабый ИИ занимается решением узкоспециальных задач, достигает конкретных поставленных целей.
Технологии искусственного интеллекта
1. Компьютерное зрение
Это обработка визуальной информации для получения знаний. Базовая задача внутри этой технологии — детектирование объекта на изображениях и видео, то есть осознание того, что на одной фотографии в углу изображен автомобиль, а на другой — компьютер, клавиатура и телефон. В робототехнике результаты обнаружения объектов дают роботу понимание, что и как делать, а также способствуют его обучению.
Логическим продолжением детектирования является трекинг, то есть вначале объект обнаружен, затем начинается отслеживание его перемещений. Роботам это нужно, чтобы понимать визуальную сцену и учиться прогнозировать действия других объектов, что незаменимо, например, для беспилотных автомобилей.
Другие задачи компьютерного зрения — это сегментация изображения (понимание, где пол, где стена, а где дверь) и оценка глубины. Последнее подразумевает понимание расстояния до того или иного объекта и решается восстановлением трехмерной геометрии по серии двухмерных фотоснимков.
2. Обработка естественного языка
Коммуникация с человеком невозможна без понимания его языка. Специалисты в области ИИ разбирают по частям отдельные морфемы, даже эмоциональный окрас слов в тексте, зашивая это в программу. Роботы нуждаются в таких технологиях, для них это как диалоговое окно с человеком, причем речь идет не просто о понимании, но и об ответной реакции и обучении новым понятиям.
3. Речевая аналитика
Если обработка языка касается текстовой информации, то речевая аналитика — звуковой. В первую очередь это распознавание речи, которое к 2019 году уже прочно вошло в быт людей. Следующий шаг — синтез речи, совершенствование голосовых качеств самого робота и/или программы до уровней человеческого общения.
4. Принятие решений
По-другому эту технологию можно назвать автоматизацией процессов, когда они проходят без участия человека. Поскольку опять же мы говорим о слабом ИИ, заточенном под решение отдельных задач, технологии принятия решений являются едва ли не самыми понятными по своему назначению. Авторы обзора выделяют несколько сфер применения таких технологий:
- навигация, например обход препятствий, запоминание и учет пройденного пути, локализация себя в пространстве;
- обучение путем демонстраций, когда робот заучивает показанные визуально или механически действия;
- эмоциональное взаимодействие, для которого машине нужно понимать настроение стоящего перед тобой человека, накладывать его на свои особенности «характера» и выдавать результат в виде «мимики» или «эмоций»;
- автоматизация машинного обучения, то есть снижение участия в нем человека, частичный перевод на самообучение.
Разумеется, такие технологии должны применяться совместно с другими: самостоятельная навигация вместе с компьютерным зрением, а эмоции — вместе с речевой аналитикой.
5. Рекомендательные системы
Отдаленно эта технология схожа с принятием решений, но аналитики Сбербанка выделили ее отдельным пунктом. Причина — потенциал широкого применения именно рекомендательных систем в сервисной робототехнике. Речь идет о предложении товаров и услуг, таргетированной рекламе, подборке кинофильмов и музыки. Применительно же к роботам технология может привести к распространению роботов-официантов или продавцов-консультантов.
Индустрия моды как поле для внедрения инноваций
Настоящее и будущее
Многие из указанных выше технологий уже применяются в робототехнике, причем не только в прототипах, но и в массовом производстве. Наибольший путь на данный момент пройден в областях компьютерного зрения и обработки естественного языка — другими словами, в распознавании визуальной и текстовой информации.
Уже сейчас существуют роботизированные системы, успешно применяющие те или иные наработки в области искусственного интеллекта. К самым известным аналитики Сбербанка относят три типа роботов:
- самоуправляемые автомобили. Пока это именно самоуправляемые, а не беспилотные транспортные средства. По закону водитель все равно необходим, хотя значительную работу по восприятию и оценке окружающей действительности проводит именно машина;
- промышленные роботы. На производстве они применяются уже достаточно долго (например, высокоточные станки или манипуляторы для сборки машин), но технологии ИИ начали проникать сюда недавно, например машинное обучение роботов, призванных корректировать работу сервомоторов, или же использование компьютерного зрения для оценки того, как лучше упаковать продукт;
- кухонные роботы. Компьютерное зрение помогает им определить местонахождение ингредиентов и утвари и составить план приготовления блюда.
В будущем развитие робототехники будет происходить в первую очередь за счет более широкого и глубокого внедрения ИИ, а не совершенствования материально-технической базы, уверены авторы обзора. Перспективы развития рынка они разделяют на краткосрочные и долгосрочные, правда, конкретных дат не называют.
1. Краткосрочные инновации:
- захват объектов и манипуляция ими будут доведены до уровня действий человека;
- мобильность роботов, преодоление ими препятствий также сравняются по возможностям с человеческими умениями;
- разговор с роботом будет неотличим от разговора с человеком;
- затраты и время на программирование роботов будут сокращаться, что сделает их самих дешевле, а внедрение автоматизации — шире.
- по умолчанию каждый робот сможет решать любые задачи, присущие слабому (узкоспециальному) ИИ;
- в рамках решения своих задач роботы станут полностью автономными, тогда как выход за их пределы потребует вмешательства человека;
- непрерывный обмен информацией и какими-то удачными решениями между роботами ускорит процесс самообучения;
- роботы начнут не просто общаться, как люди, они смогут планировать поведение с учетом возможного эффекта на окружающих, по сути выработают социальный интеллект;
- благодаря технологиям ИИ роботы получат не просто базовые знания по определенному виду деятельности, но и станут считаться высококлассными специалистами, например в качестве продавцов или медсестер.
Новая машина: интеллектуальные системы — Индикатор
Возможно, иногда вас удивляет то же, что и нас: «Как Uber всегда удается находить машину, если я в каком-то случайном закоулке в пятистах милях от дома, а затем автоматически списывать деньги с карты, высылать счет и отмечать мой пассажирский рейтинг — и все за секунды?» или «Как я могу смотреть видео на YouTube на мобильном устройстве, двигаясь в поезде со скоростью 130 миль (209 км — прим. Indicator.Ru) в час?».
Две этих ситуации, два момента «чуда», которые уже стали обыденными, еще несколько лет назад были бы невозможны. Удивительно то, что и Uber, и YouTube, несмотря на то что предлагают совсем не похожие услуги, выполняют свои операции на «машинах» с практически одинаковыми компонентами. Эта новая машина, та, что мы зовем «интеллектуальной системой», быстро становится краеугольным камнем для компаний, конкурирующих в наукоемкой среде. Она в центре Facebook, Instagram, Google, Е-Trade, Betterment и всех прочих сегодняшних цифровых лидеров.
Однако при всей значимости новые машины по-прежнему остаются во многом непонятыми. Многие из нас активно потребляют результаты действия интеллектуальных систем, не останавливаясь, чтобы задуматься, насколько актуальные, персонализированные и отборные возможности создаются и достаются нам.
В связи с этим в данной главе мы объясним, чем являются эти новые машины — каковы компоненты технологии, как сочетаются, на что похож хороший образец и каким образом они глубоко повлияют на будущее вашей работы.
Мы знаем, обзор может оказаться похожим на то, как вы учились водить, будучи подростком, и ваш дядя, откинув капот машины, объяснял, как все это работает. Некоторые уроки могут быть скучноватыми (например, «это карбюратор, это свечи зажигания»), но сейчас, пользуясь интеллектуальными системами на непрерывной основе, мы должны создавать и применять их в своих компаниях, чтобы добиться конкурентного преимущества, поэтому рабочие знания здесь очень важны.
Дать определение новой машине
Давайте начнем с простого определения, а затем немного его распространим.
Интеллектуальная система совмещает в себе программное обеспечение (алгоритмы, деловой регламент, код машинного обучения, прогнозовая аналитика), комплектующее оборудование (серверы, датчики, мобильные устройства, возможность подключения), данные (контекстуализированные и в реальном времени) и человеческое участие (часто оценка или запросы).
Может прозвучать как «куча оборудования, ПО и данных соединить вместе — и там произойдет чудо». Так что давайте вкратце пройдемся по трем ключевым атрибутам, делающим интеллектуальную систему такой особенной.
- Программное обеспечение, которое учится. Программное обеспечение, составляющее центр новой машины, — это то, чего мы не видели никогда прежде. Впервые в истории человечества у нас есть инструмент, который может делать сам себя. ПО, способное к машинному обучению, со временем обновляет само себя. Система учится распознавать схемы и находить скрытые инсайты внутри данных — и все это, не будучи специально запрограммированным на то, что надо делать и где надо искать. Например, именно этим способом Uber узнает, как объединить правильного водителя с правильным пассажиром, а Facebook заполняет вашу персональную ленту новостей. В самих компаниях этим занимается всего несколько человек. И это было бы невозможно, поскольку в случае Facebook — это более миллиарда заходов пользователей на сайт в день. Поэтому вместо людей за всеми и за каждой сессией следит машина, постоянно становясь еще умнее.
Искусственный разум: когда машины начнут думать как люди | Технологии
Что умеет ИИ
Хороший пример такой задачи — перевод текста с иностранного языка. С теоретической точки зрения эта задача во многом идентична оригинальному тесту Тьюринга. По мнению лингвистов, одна из функций языка — распознавание принадлежности собеседника к своей группе (именно этим объясняется изобилие местных диалектов, молодежных и профессиональных жаргонов). Если компьютер предложит перевод, неотличимый от речи носителя языка, то носитель наверняка признает в нем члена своей группы, то есть как минимум человека.Два года назад компания Google почти полностью перевела свой сервис Google Translate на глубокое обучение (Deep Learning). В отличие от предыдущего поколения систем машинного перевода, которые в основном переводили отдельные слова и фразы, современные нейросети рассматривают предложение целиком, что позволяет переводить его не по значению, а по смыслу. Бурный рост объемов данных, в сборе которых участвуют многочисленные умные устройства интернета вещей (IoT), развитие многослойных нейронных сетей, алгоритмы Deep Learning и другие технологические возможности научили обычные компьютеры и мобильные устройства не только читать, слышать, видеть и понимать информацию, но и выполнять сложные задачи на таком же уровне, на котором их бы выполнил и человек.
Соответственно, в разы вырос и объем инвестиций в технологии искусственного интеллекта. Так, по данным Venture Scanner, в 2007 году он составлял всего $500 млн, а в 2017 году — уже свыше $6 млрд. Доходы от внедрения систем искусственного интеллекта, согласно данным Gartner, в 2018 году составят $1,2 трлн, что на 70% выше, чем в 2017 году. А к 2022 году их объем увеличится до $3,9 трлн.
Microsoft Bing в 2018 году практически безошибочно предсказал всех лауреатов премии «Оскар», просчитавшись всего в одном случае.
Искусственный интеллект уже активно применяется во множестве отраслей. Что же касается ИТ-компаний, то в них, наверное, не осталось областей, где бы он не использовался. Компания Mail.Ru Group реализовала машинное обучение практически во всех своих продуктах. Это автоматические ответы на письма в «Почте», компьютерное зрение в «Облаке», поиск и рекомендация товаров в сервисах электронной коммерции, таргетированный показ рекламы и многое другое. Компания Samsung разработала систему внутриигровой контекстной рекламы Gadget, в которой объявления не всплывают в виде раздражающих пользователя отдельных сообщений, а плавно встраиваются в игровой процесс. При этом тематика рекламы постоянно меняется в соответствии с предпочтениями геймера. На блокчейне разработана платформа Effect.Ai, которая будет связывать поставщиков и потребителей различных услуг напрямую, без посредников. Искусственный интеллект научился обыгрывать человека в покер и в Dota 2. Принадлежащая Google компания DeepMind, которой уже удалось создать искусственный интеллект, выигравший у чемпиона мира по игре го, сегодня разрабатывает алгоритмы, способные победить человека в игре StarCraft 2. Системы прогнозирования на базе ИИ все шире применяются в спорте и шоу-бизнесе. Так, искусственный интеллект Microsoft Bing в 2018 году практически безошибочно предсказал всех лауреатов премии «Оскар», просчитавшись всего в одном случае.
Неплохие достижения у ИИ в медицине. Появились системы, позволяющие на ранних стадиях диагностировать онкологические заболевания кожи, а также выявлять нарушения в работе сердца по ЭКГ с большей эффективностью, чем кардиолог. В Китае на базе ИИ реализован проект социальной направленности: разработчики создали систему, которая анализировала поведение пользователей в соцсетях и выявляла среди них тех, у кого были суицидальные наклонности, с целью оказать им своевременную психологическую помощь. На сегодняшний день с ее помощью удалось спасти уже более 20 000 человек.
Нейронные сети уже называют Software 2.0. В отличие от классического подхода к разработке (Software 1.0) они не требуют написания пошаговых инструкций для компьютера. Достаточно указать конечную цель (например, выиграть в го), а также задать структуру сети и сигналы для обучения. Далее нейросеть сможет выучить необходимые зависимости в данных для решения задачи, используя имеющиеся в ее распоряжении вычислительные ресурсы.
Чего не умеет ИИ
Что искусственный интеллект пока не умеет делать? В первую очередь это задачи, где сложно принять однозначное решение, где требуется контекстуальный подход в зависимости от условий и ситуации. ИИ не сможет самостоятельно осуществить научное открытие. Одним словом, везде, где нужен полноценный анализ ситуации, а не просто принятие решения, основанного на обучающей выборке данных, пальма первенства будет за человеком.
Конечно, технологии ИИ находятся на пике хайпа, однако нельзя не отметить определенные проблемы, риски и нерешенные задачи, связанные с ними. В первую очередь это, конечно, качество данных. Ведь оно напрямую зависит от того, что мы предоставляем машине в качестве обучающей выборки. Так, разрабатывая свою систему распознавания лиц на фото, Mail.Ru Group столкнулась с такой проблемой, как отсутствие качественных размеченных выборок с лицами азиатского происхождения, детскими лицами, а также фотографиями одних и тех же людей, сделанными в разные годы, по мере их взросления. В результате разработчикам пришлось формировать такие данные самостоятельно, что вылилось в немалые дополнительные затраты.
С 2009 года автомобили Google наездили в беспилотном режиме 3,7 млн километров на дорогах общественного пользования.
Хороший пример — разработка беспилотных автомобилей. По сути, здесь практически всегда используется метод supervised learning (обучение путем проб и ошибок). К примеру, компания Google потратила не один год на то, чтобы получить достаточный объем данных и учесть все нюансы беспилотной езды. С 2009 года автомобили Google наездили в беспилотном режиме 3,7 млн километров на дорогах общественного пользования и тестовых полигонах в Калифорнии, Аризоне, Техасе и Вашингтоне, а также более 1,6 млрд километров в режиме компьютерной симуляции. От качества этой работы зависит, насколько грамотно будет ориентироваться автомобиль без водителя на дороге, определять других участников дорожного движения, распознавать объекты на дороге, правильно реагировать на различные ситуации и т. д.
Еще один серьезный недостаток или скорее ограничение технологии искусственного интеллекта заключается в узком спектре применения каждого алгоритма. Для каждой отдельной операции или бизнес-процесса систему искусственного интеллекта приходится очень серьезно дорабатывать. Вряд ли под новую задачу получится адаптировать уже существующую нейросеть, пусть даже специализирующуюся на смежных задачах, поскольку данные будут отличаться. В большинстве случаев изменения будут весьма значительны. Например, сложно будет разработать на базе AI-системы беспилотного автомобиля систему управления беспилотным речным или морским катером. Это ключевая проблема так называемого «слабого» искусственного интеллекта, заточенного под решение конкретной задачи. В свою очередь, «сильный» искусственный интеллект, практическая реализация которого — вопрос будущего, должен уметь не просто алгоритмически оперировать данными и информацией, но понимать их смысл. Например, искусственный интеллект не умеет читать комиксы, не способен сопоставить все картинки с текстом в правильном порядке в соответствии с сюжетом, а с этой задачей справляются даже маленькие дети. Одним из важных шагов в сторону «сильного» ИИ можно назвать разработку капсульных нейронных сетей. Они обрабатывают информацию так, как это делает человеческий мозг, при этом не нуждаются в больших объемах данных для обучающих моделей.
Кто несет ответственность за решения, принятые искусственным интеллектом? Банк может заблокировать важную финансовую транзакцию, беспилотный автомобиль может сбить человека, не заметив его либо приняв за какой-то другой объект. Искусственный интеллект, управляющий системой банковского кредитного скоринга, чаще «отказывает» чернокожим заявителям, чем белым, в получении кредита. Системы распознавания лиц, которые используют в том числе и правоохранительные органы, неплохо различают белых людей, но часто ошибаются при обработке образов чернокожих, особенно женщин. Так, при распознавании лиц темнокожих женщин коммерческие системы ошибаются почти в 35% случаев. Если раньше в основе таких инцидентов был человеческий фактор, то сейчас это bias (искажение) в данных.
Нейросеть Deep Dream решила, что рука — это неотъемлемая часть гантели.
Разумеется, это временные проблемы, которые можно решить, предоставив системе более совершенную обучающую выборку данных. Над этим сегодня и трудятся разработчики. В автомобильной индустрии чаще всего отвечать приходится не разработчику AI-системы, а производителю транспортного средства, который установил ее на свою продукцию. Но в большинстве случаев бремя ответственности лежит и на разработчике, и на заказчике. В отличие от обычных систем, работающих в строгом соответствии с программным кодом, который можно проверить на ошибки, модифицировать и т. д., мы не всегда можем заранее предсказать, какой результат нам дадут многослойные нейронные сети и системы глубокого обучения после обработки того или иного массива данных. Так, нейросеть Deep Dream компании Google попросили генерировать изображение гантели. Система справилась с задачей, однако ко всем полученным изображениям гантели была добавлена и рука человека. Иными словами, нейросеть решила, что рука — это неотъемлемая часть гантели.
И все же технологии искусственного интеллекта уже сегодня в ряде случаев облегчают жизнь обычных людей и помогают компаниям в решении множества задач. Несмотря на существующие особенности и «подводные камни», системы на базе AI привлекают заказчиков, в том числе из крупного бизнеса. А многократно растущий с каждым годом объем инвестиций дает основания надеяться на существенный технологический рывок уже в ближайшем будущем.
Что такое искусственный интеллект и как он работает
Искусственный интеллект – это технология, а точнее направление современной науки, которое изучает способы обучить компьютер, роботизированную технику, аналитическую систему разумно мыслить также как человек. Собственно мечта об интеллектуальных роботах-помощниках возникла задолго до изобретения первых компьютеров.
Людей в середине 50-х годов прошлого столетия сильно поразили возможности вычислительных машин, особенно способности ЭВМ, безошибочно выполнять множество задач одновременно. В головах ученых и писателей сразу возникли фантастические идеи о мыслящих машинах. Именно в этот период начинают зарождаться первые технологии искусственного интеллекта.
Исследования в сфере ИИ ведутся путем изучения умственных способностей человека и переложения полученных результатов в поле деятельности компьютеров. Таким образом, искусственный интеллект получает информацию из самых разных источников и дисциплин. Это и информатика, математика, лингвистика, психология, биология, машиностроение. На основе массива данных с помощью технологии машинного обучения компьютеры пытаются имитировать интеллект человека.
Главные цели ИИ достаточно прозрачны:
- Создание аналитических систем, которые обладают разумным поведением, могут самостоятельно или под надзором человека обучаться, делать прогнозы и строить гипотезы на основе массива данных.
- Реализация интеллекта человека в машине – создание роботов-помощников, которые могут вести себя как люди: думать, учиться, понимать и выполнять поставленные задачи.
История развития искусственного интеллекта
Авторство термина «искусственный интеллект» приписывают Джону Маккарти – основоположнику программирования, изобретателю языка Лисп. В 1956 году будущий лауреат престижной премии Тьюринга продемонстрировал в университете Карнеги-Меллон прототип программы на основе ИИ.
Умными роботами человечество начало грезить в первой четверти 20 века. Известный литератор Карел Чапек в 1924 года поставил в лондонском театре пьесу «Универсальные роботы». Представление поразило публику, а слово «робот» прочно вошло в обиход.
В 1943-45 годах закладываются основы для понимания и создания нейронных сетей, а уже в 1950 году Алан Тьюринг публикует в научном издании анализ интеллектуальной шахматной игры. В 1958 году появляется первый язык программирования искусственного интеллекта – Лисп.
В период с 1960 по 1970 ряд ученых доказали, что компьютеры способны понимать естественный язык на достаточно хорошем уровне. В 1965 году разработали Элизу – первого робота-помощника, который мог говорить на английском языке. В эти же годы направление ИИ стало привлекать правительственные и военные организации США, СССР и других стран. Так Министерство обороны США уже к 70-м годам запустило проект виртуальных уличных карт – прототип GPS.
В 1969 году ученые Стэнфордского университета создали Шеки – робота с ИИ, способного самостоятельно перемещаться, воспринимать некоторые данные и решать несложные задачи.
В Эдинбургском университете четырьмя годами позже (1973) был создан робот Фредди – это шотландский представитель семейства ИИ мог использовать компьютерное зрение для того, чтобы находить и собирать разные модели.
В СССР искусственный интеллект также развивался стремительно. Академики А.И. Берг и Г.С.Поспелов в 1954-64 годах создают программу «АЛПЕВ ЛОМИ», которая автоматически доказывает теоремы. В эти же годы советскими учеными был разработан алгоритм «Кора», который моделирует деятельность человеческого мозга при распознавании образов. В 1968 году Турчиным В.Ф создается символьный язык обработки данных РЕФАЛ.
80-е годы XX века стали прорывными для ИИ. Учеными были разработаны обучающие машины – интеллектуальные консультанты, которые предлагали варианты решений, умели самообучаться на начальном уровне, общались с человеком на ограниченном, но уже естественном языке.
В 1997 году создали известную шахматную программу – компьютер «Дип Блю», который обыграл чемпиона мира по шахматам Гарри Каспарова. В эти же годы Япония приступает к разработке проекта компьютера 6-го поколения на основе нейросетей.
Интересен факт, что в 1989 году другая шахматная программа Deep Thought обыграла гроссмейстера международного уровня Бента Ларсена. После этого поединка машины и человека, Гарри Каспаров заявил:
«Если интеллектуальная машина сможет переиграть в шахматы лучшего из лучших, значит, она сможет писать самую лучшую музыку, сочинять самые лучшие книги. Я не могу в это поверить. Когда я узнаю, что ученые создали компьютер с рейтингом интеллекта 2800, то есть равному моему, я сам вызову машину на шахматный поединок, чтобы защитить человеческую расу»
В 2000-е годы вновь появился интерес к робототехнике. ИИ активно внедряется в космическую отрасль, а также осваивается в бытовой сфере. Появляются системы умного дома, «продвинутые» бытовые устройства. Роботы Кисмет и Номад исследуют районы Антарктиды.
С 2008 начинается эра технологической сингулярности, которая по расчетам экспертов должна выйти в зенит в 2030 году. Начинается интеграция человека с вычислительными машинами, увеличиваются возможности человеческого мозга, появляются биотехнологии.
Принципы ИИ
Прежде чем описываться технологические принципы, без которых немыслимо развитие искусственного интеллекта, стоит познакомиться с этическими законами робототехники. Их в 1942 году вывел Айзек Азимов в своём романе «Хоровод»:
- Робот или система с искусственным интеллектом не может навредить человеку своим действием или же своим бездействием допустить, чтобы человеку был приченен вред.
- Робот должен повиноваться приказам, которые получает от человека, кроме тех, которые противоречат Первому закону.
- Робот должен заботиться о своей безопасности, если это не противоречит Первому и Второму Законам.
До выхода в свет романа Азимова, искусственный интеллект ассоциировался с образом Франкенштейна Мэри Шелли. Искусственно созданное подобие человека с разумом восстает против людей. Эту же страшилку перенесли и в знаменитый блокбастер Голливуда «Терминатор».
Интересен факт, что в 1986 году Айзек Азимов дописал еще один пункт к законам робототехники. Писатель предпочел назвать его «нулевым»:
0. Робот не может навредить человеку, если только не докажет, что в конечном итоге это (вред) будет полезно для всего человечества.
Разобравшись с этическими законами, перейдем к технологическим принципам искусственного интеллекта:
- Машинное обучение (МО) – принцип развития ИИ на основе самообучающихся алгоритмов. Участие человека при таком подходе ограничивается загрузкой в «память» машины массива информации и постановкой целей. Существует несколько методик МО: обучение с учителем – человек задает конкретную цель, хочет проверить гипотезу или подтвердить закономерность. Обучение без учителя – результат интеллектуальной обработки данных неизвестен – компьютер самостоятельно находит закономерности, учится думать как человек. Глубокое обучение – это смешанный способ, главное отличие в обработке больших массивов данных и использование нейросетей.
- Нейросеть – математическая модель, которая имитирует строение и функционирование нервных клеток живого организма. Соответственно в идеале – это самостоятельно обучаемая система. Если перенести принцип на технологическую основу, то нейросеть – это множество процессоров, которые выполняют какую-то одну задачу в масштабном проекте. Другими словами суперкомпьютер – это сеть из множества обычных компьютеров.
- Глубокое обучение относят в отдельный принцип ИИ, так как этот метод используется для обнаружения закономерностей в огромных массивах информации. Для такой непосильной человеку работы, компьютер использует усовершенствованные методики.
- Когнитивные вычисления – одно их направлений ИИ, которое изучает и внедряет процессы естественного взаимодействия человека и компьютера, наподобие взаимодействия между людьми. Цель технологии искусственного интеллекта заключается в полной имитации человеческой деятельности высшего порядка – речь, образное и аналитическое мышление.
- Компьютерное зрение – это направление ИИ используется для распознавания графических и видеоизображений. Сегодня машинный интеллект может обрабатывать и анализировать графические данные, интерпретировать информацию в соответствии с окружающей обстановкой.
- Синтезированная речь. Компьютеры уже могут понимать, анализировать и воспроизводить человеческую речь. Мы уже можем управлять программами, компьютерами и гаджетами с помощью речевых команд. Например, Siri или Google assistant, Алиса в Яндексе и другие.
Кроме того, трудно представить существование искусственного интеллекта без мощных графических процессоров, которые являются сердцем интерактивной обработки данных. Для интеграции ИИ в различные программы и устройства необходима технология API – программные интерфейсы приложений. Используя API можно без труда добавлять технологии искусственного интеллекта в любые компьютерные системы: домашняя безопасность, умный дом, оборудование на ЧПУ и прочее.
Сфера использования ИИ
Искусственный интеллект постепенно приходит во все отрасли человеческой деятельности, делая обычные программные комплексы интеллектуальными:
- Медицина и здравоохранение. Компьютерные системы ведут учет пациентов, помогают в расшифровке диагностических результатов. Например, снимки УЗИ, рентгена, томографа и другого медоборудования. Интеллектуальные системы даже могут по наличию признаков у пациента определять болезнь, предлагать оптимальные варианты лечения. В магазине приложений Гугла можно найти программы-помощники здорового образа жизни. Эти приложения считывают пульс и температуру тела при касании дисплея телефона палицами, чтобы определить уровень стресса человека и подсказать, как его снизить.
- Розничные продажи в онлайн-магазинах. Многим уже знакома релевантная реклама Гугла и Яндекса. С её помощью ритейлеры предлагают товары и услуги в соответствии с интересами пользователя. Например, вы посещали интернет-магазин купальников, какие-то модели рассматривали, читали характеристики и прочее. Покинув магазин, вы некоторое время будете видеть рекламу купальников на других сайтах. По схожему принципу работают блоки «похожие товары» в интернет-магазинах. Системы аналитики изучают поведенческие метрики пользователя, определяют его покупательские пристрастия и показывают релевантные (по их мнению) предложения.
- Политика. Интеллектуальные машины помогли Барак Обаме выиграть вторые президентские выборы. Для своей кампании тогда ещё действующий президент США нанял лучшую команду профессионалов в области анализа данных. Специалисты использовали возможности интеллектуальных машин, чтобы рассчитать наилучший день, штат и аудиторию для выступлений Обамы. По оценкам специалистов это дало перевес в 10-12%.
- Промышленность. Искусственный интеллект может анализировать данные с разных производственных участков и регулировать нагрузку на оборудование. Кроме того, интеллектуальные машины используются для прогнозирования спроса в разных отраслях промышленности.
- Игровая индустрия, образование. Искусственный интеллект активно применяется создателями игр. Умные машины, робототехника постепенно внедряются в образовательные процессы большинства государств.
Основные проблемы ИИ
Как вы понимаете возможности искусственного интеллекта на данной стадии развития не безграничны. Перечислим главные трудности:
- Обучение машин возможно только на основе массива данных. Это означает, что любые неточности в информации сильно сказываются на конечном результате.
- Интеллектуальные системы ограничены конкретным видом деятельности. То есть умная система, настроенная на выявление мошенничества в сфере налогообложения, не сможет выявлять махинации в банковской сфере. Мы имеем дело с узкоспециализированными программами, которым ещё далеко до многозадачности человека.
- Интеллектуальные машины не являются автономными. Для обеспечения их «жизнедеятельности» необходима целая команда специалистов, а также большие ресурсы.
Резюме
Мы познакомились с понятием, что такое искусственный интеллект. Изучили основные принципы: этические и технологические. Рассмотрели главные препятствия на пути развития ИИ. Искусственный интеллект тесно связан с развитием компьютерной техники, а также таких наук как математика, статистика, комбинаторика и других.
10 самых важных вех в развитии ИИ на сегодняшний день / Habr
На протяжении своей истории, от первых рассказов Азимова про роботов до AlphaGo, у ИИ были взлёты и падения. Но на самом деле его история только начинается.
Искусственный интеллект пока ещё очень молод. Однако в этой области произошло уже много значимых событий. Некоторые из них привлекли внимание культуры, другие породили взрывную волну, воспринятую только учёными. Вот некоторые ключевые моменты, наиболее сильно повлиявшие на развитие ИИ.
Рассказ Азимова «Хоровод» отмечает первое появление в историях этого знаменитого фантаста «трёх законов робототехники»:
- Робот не может причинить вред человеку или своим бездействием допустить, чтобы человеку был причинён вред.
- Робот должен повиноваться всем приказам, которые даёт человек, кроме тех случаев, когда эти приказы противоречат Первому Закону.
- Робот должен заботиться о своей безопасности в той мере, в которой это не противоречит Первому или Второму Законам.
В рассказе «Хоровод» робот Спиди ставится в положение, в котором третий закон входит в противоречие с первыми двумя. Рассказы Азимова про роботов заставили задуматься любителей НФ, среди которых были и учёные, о возможности появления думающих машин. По сей день люди занимаются интеллектуальными упражнениями, применяя законы Азимова к современным ИИ.
2. Алан Тьюринг предложил свою «Игру в имитацию» (1950)
Алан Тьюринг описал первый принцип измерения степени разумности машины в 1950-м.
Предлагаю рассмотреть вопрос «Могут ли машины думать?» Так начиналась влиятельная исследовательская работа Тьюринга 1950 года, разработавшая систему взглядов для рассуждения о машинном разуме. Он задал вопрос о том, можно ли считать машину разумной, если она может имитировать разумное поведение человека.
Этот теоретический вопрос породил знаменитую «Игру в имитацию» [её позже назовут «Тестом Тьюринга» / прим. перев.], упражнение, в котором исследователь-человек должен определить, с кем он переписывается – с компьютером или человеком. Во времена Тьюринга не существовало машин, способных пройти этот тест, нет их и сегодня. Однако его тест дал простой способ определить наличие разума у машины. Также он помог сформировать философию ИИ.
3. Конференция по ИИ в Дартмуте (1956)
К 1955 году учёные всего мира уже сформировали такие концепции, как нейросети и естественный язык, однако ещё не существовал объединяющих концепций, охватывающих различные разновидности машинного интеллекта. Профессор математики из Дартмутского колледжа, Джон Маккарти, придумал термин «искусственный интеллект», объединяющий их все.
Маккарти руководил группой, подавшей заявку на грант для организации конференции по ИИ в 1956. В Дартмут-холл летом 1956 были приглашены многие ведущие исследователи того времени. Учёные обсуждали различные потенциальные области изучения ИИ, включая обучение и поиск, зрение, логические рассуждения, язык и разум, игры (в частности, шахматы), взаимодействия человека с такими разумными машинами, как личные роботы.
Общим консенсусом тех обсуждений стало то, что у ИИ есть огромный потенциал для того, чтобы принести пользу людям. Было очерчено общее поле исследовательских областей, на развитие которых может повлиять машинный интеллект. Конференция организовала и вдохновила исследования в области ИИ на многие годы.
4. Фрэнк Розенблатт создаёт перцептрон (1957)
Фрэнк Розенблатт создал механическую нейросеть в Корнеллской лаборатории аэронавтики в 1957
Базовый компонент нейросети называется «перцептроном» [это лишь самый первый и примитивный тип искусственного нейрона / прим. перев.]. Набор входящих данных попадает в узел, подсчитывающий выходное значение, и выдающий классификацию и уровень уверенности. К примеру, входные данные могут анализировать различные аспекты изображения на основании входных данных и «голосовать» (с определённым уровнем уверенности) за то, есть ли на нём лицо. Затем узел подсчитывает все «голоса» и уровень уверенности, и выдаёт консенсус. В нейросетях сегодняшнего дня, работающих на мощных компьютерах, работают миллиарды подобных структур, связанных между собой.
Однако перцептроны существовали ещё до появления мощных компьютеров. В конце 1950-х молодой психолог-исследователь Фрэнк Розенблатт создал электромеханическую модель перцептрона под названием Mark I Perceptron, хранящуюся сегодня в Смитсоновском институте. Это была аналоговая нейросеть, состоявшая из сетки светочувствительных элементов, соединённых проводами с банками узлов, содержащих электромоторы и поворотные резисторы. Розенблатт разработал «перцептронный алгоритм», управлявший сетью, которая постепенно подстраивала силу входных сигналов так, чтобы в итоге правильно идентифицировать объекты – по сути, обучалась.
Учёные спорили о значимости этой машины вплоть до 1980-х. Она сыграла важную роль по созданию физического воплощения нейросети, которая до тех пор существовала в основном только в виде научной концепции.
5. ИИ сталкивается со своей первой зимой (1970-е)
Большую часть своей истории ИИ существовал только в исследованиях. Большую половину 1960-х правительственные агентства, в частности, DARPA, вливали деньги в исследования и практически не требовали отчёта по инвестициям. Исследователи ИИ часто преувеличивали потенциал своей работы, чтобы продолжать получать финансирование. Всё изменилось в конце 1960-х и начале 1970-х. Два отчёта – один от рекомендательного совета по автоматической обработке языка (ALPAC) для правительства США 1966 года, второй от Лайтхилла для правительства Британии 1973 года – прагматически оценили прогресс в исследованиях ИИ и выдали весьма пессимистичный прогноз о потенциале данной технологии. В обоих отчётах ставилось под вопрос наличие ощутимого прогресса в различных областях исследований ИИ. Лайтхилл в своём отчёте утверждал, что ИИ для задач распознавания речи будет крайне сложно масштабировать до размеров, которые смогут быть полезными правительству или военным.
В итоге правительства США и Британии начали урезать финансирование исследований ИИ для университетов. DARPA, без проблем финансировавшее исследования ИИ в 1960-х, стало требовать от проектов чётких временных рамок и подробного описания предполагаемых результатов. В итоге стало казаться, что ИИ не оправдал ожиданий, и никогда уже не сможет достичь уровня человеческих возможностей. Первая «зима» ИИ продлилась все 1970-е и 80-е.
6. Приход второй зимы ИИ (1987)
1980-е начались с разработки и первых успехов «экспертных систем», хранивших большие объёмы данных и эмулировавшие процесс принятия решений людьми. Технологию изначально разработали в университете Карнеги-Меллона для компании Digital Equipment Corporation, а затем другие корпорации начали быстро внедрять её. Однако экспертные системы требовали дорогого спеиализированного оборудования, и это стало проблемой, когда начали появляться сходные по мощности и более дешёвые рабочие станции от Sun Microsystems а также персональные компьютеры от Apple и IBM. Рынок экспертных компьютерных систем рухнул в 1987, когда с него ушли основные производители оборудования.
Успех экспертных систем в начале 80-х вдохновил DARPA на увеличение финансирования исследований ИИ, но вскоре это вновь поменялось, и агентство урезало большую часть этого финансирования, оставив всего несколько программ. И снова термин «искусственный интеллект» в исследовательском сообществе стал почти запретным. Чтобы их не воспринимали, как непрактичных мечтателей в поисках финансирования, исследователи начали использовать другие названия для работы, связанной с СС – «информатика», «машинное обучение» и «аналитика». Эта, вторая зима ИИ продолжалась вплоть до 2000-х.
7. IBM Deep Blue побеждает Каспарова (1997)
IBM Deep Blue победила лучшего шахматиста мира, Гарри Каспарова, в 1997.
Общественное представление об ИИ улучшилось в 1997 году, когда шахматный компьютер Deep Blue от IBM победил тогдашнего чемпиона мира Гарри Каспарова. Из шести игр, проводившихся в телестудии, Deep Blue выиграла в двух, Каспаров в одной, а три окончились вничью. Ранее в том году Каспаров победил предыдущую версию Deep Blue.
У компьютера Deep Blue было достаточно вычислительных мощностей, и он использовал «метод грубой силы», или полный перебор, оценивая 200 млн возможных ходов в секунду и подбирая наилучший. Возможности людей ограничиваются оценкой лишь порядка 50 ходов после каждого хода. Работа Deep Blue была похожа на работу ИИ, но компьютер не размышлял о стратегиях и не учился игре, как смогут делать последовавшие за ним системы.
И всё же победа Deep Blue над Каспаровым впечатляющим образом вернула ИИ в круг общественного внимания. Некоторые люди были очарованы. Другим не понравилось, что машина обыграла эксперта в шахматах. Инвесторы были впечатлены: победа Deep Blue на $10 подняла стоимость акций IBM, выведя их на максимум того времени.
8. Нейросеть видит кошек (2011)
К 2011 году учёные из университетов всего мира говорили о нейросетях и создавали их. В том году программист Джефф Дин из Google познакомился с профессором информатики из Стэнфорда Эндрю Ыном. Вдвоём они замыслили создание большой нейросети, обеспеченной огромной вычислительной энергией серверов Google, которой можно будет скормить огромный набор изображений.
Созданная ими нейросеть работала на 16 000 серверных процессорах. Они скормили ей 10 млн случайных и неразмеченных кадров с видеороликов YouTube. Дин и Ын не просили нейросеть выдать какую-то конкретную информацию или разметить эти изображения. Когда нейросеть работает таким образом, обучаясь без учителя, она естественным образом пытается найти закономерности в данных и формирует классификации.
Нейросеть обрабатывала изображения три дня. Затем она выдала три размытых изображения, обозначающих визуальные образы, которые она снова и снова встречала в обучающих данных – лицо человека, тело человека и кота. Это исследование стало серьёзным прорывом в использовании нейросетей и обучении без учителя в компьютерном зрении. Также оно отметило начало проекта Google Brain.
9. Джоффри Хинтон спустил с поводка глубокие нейросети (2012)
Исследование Джоффри Хинтона помогло возродить интерес к глубокому обучению
Через год после прорыва Дина и Ына профессор Торонтского университета Джоффри Хинтон с двумя своими студентами создали нейросеть для компьютерного зрения AlexNet для участия в соревновании по распознаванию изображений ImageNet. Участники должны были использовать свои системы для обработки миллионов тестовых изображений и определять их с наивысшей возможной точностью. AlexNet выиграла соревнование с процентом ошибок в два с лишним раза меньшим, чем у ближайшего конкурента. В пяти вариантах подписи к изображению, данных нейросетью, только в 15,3% случаев не было правильного варианта. Предыдущим рекордом было 26% ошибок.
Эта победа убедительно показала, что глубокие нейросети, работающие на графических процессорах, куда как лучше других систем могут точно определять и классифицировать изображения. Это событие, возможно, сильнее остальных повлияло на возрождение интереса к глубоким нейросетям, и заслужило Хинтону прозвище «крёстный отец глубокого обучения». Вместе с другими гуру в области ИИ, Йошуа Бенджио и Яном Лекуном, Хинтон получил долгожданную премию Тьюринга в 2018.
10. AlphaGo обыгрывает чемпиона мира по го (2016)
В 2013 году исследователи британского стартапа DeepMind опубликовали работу, где было описано, как нейросеть научилась играть и выигрывать в 50 старых игр от Atari. Под впечатлением от этого компанию купила Google – как говорят, за $400 млн. Однако главная слава DeepMind была ещё впереди.
Через несколько лет учёные из DeepMind, теперь уже в рамках Google, перешли от игр Atari к одной из самых старых задач ИИ – японской настольной игре го. Они разработали нейросеть AlphaGo, способную играть в го и обучаться во время игры. Программа провела тысячи партий против других версий AlphaGo, обучаясь на основе проигрышей и выигрышей.
И это сработало. AlphaGo обыграла величайшего игрока в го в мире, Ли Седоля, со счётом 4:1 в серии игр в марте 2016. Процесс снимали для документального фильма. При его просмотре трудно не заметить грусть, с которой Седоль воспринял проигрыш. Казалось, что проиграли все люди, а не только один человек.
Последние продвижения в области глубоких нейросетей настолько сильно изменили область ИИ, что реальная его история, возможно, только лишь начинается. Нас ждёт много надежд, шумихи и нетерпения, но сейчас уже ясно, что ИИ повлияет на все аспекты жизни XXI века – и возможно даже сильнее, чем в своё время это сделал интернет.
Заставь машину думать: как развивают искусственный интеллект у роботов :: РБК Тренды
Робототехника долгое время развивалась отдельно от искусственного интеллекта (ИИ), но сейчас перспектив у автоматизации без него нет. Аналитики Сбербанка рассмотрели практику применения ИИ при создании роботов
Понятие искусственного интеллекта неразрывно связано с робототехникой. По сути, робот — машина, умеющая воспринимать окружающую действительность, ее интерпретировать и действовать соответствующим образом, то есть думать.
Появление терминов «робот» и «искусственный интеллект» сильно разнесено по времени (1921 и 1956 годы соответственно), а за последние полвека пути развития двух областей то сходились, то расходились. Но сейчас прогресс вычислительных мощностей, солидный объем практических наработок и доступность информации вынуждают эти дисциплины вновь объединиться, пишут аналитики Сбербанка в ежегодном обзоре рынка робототехники за 2019 год.
Российский рынок роботов: угрозы и возможности
В определении авторов исследования ИИ — это способность программ и устройств интерпретировать данные, обучаться на них и использовать полученные знания для достижения целей, в том числе самостоятельно. В свою очередь ИИ делится на два типа:
- сильный ИИ — интеллект в широком смысле, способный решать задачи наравне с человеческим разумом;
- слабый ИИ занимается решением узкоспециальных задач, достигает конкретных поставленных целей.
Сегодня, пишут аналитики Сбербанка, сильного ИИ в природе пока не существует и вообще есть обоснованные сомнения в возможности его реализации. Поэтому искусственный интеллект сейчас и в ближайшем будущем — это слабый ИИ, занимающийся отдельными проблемами и задачами. Решить их помогает набор технологий, сгруппированный авторами доклада по пяти видам.
Технологии искусственного интеллекта
1. Компьютерное зрение
Это обработка визуальной информации для получения знаний. Базовая задача внутри этой технологии — детектирование объекта на изображениях и видео, то есть осознание того, что на одной фотографии в углу изображен автомобиль, а на другой — компьютер, клавиатура и телефон. В робототехнике результаты обнаружения объектов дают роботу понимание, что и как делать, а также способствуют его обучению.
Логическим продолжением детектирования является трекинг, то есть вначале объект обнаружен, затем начинается отслеживание его перемещений. Роботам это нужно, чтобы понимать визуальную сцену и учиться прогнозировать действия других объектов, что незаменимо, например, для беспилотных автомобилей.
Другие задачи компьютерного зрения — это сегментация изображения (понимание, где пол, где стена, а где дверь) и оценка глубины. Последнее подразумевает понимание расстояния до того или иного объекта и решается восстановлением трехмерной геометрии по серии двухмерных фотоснимков.
2. Обработка естественного языка
Коммуникация с человеком невозможна без понимания его языка. Специалисты в области ИИ разбирают по частям отдельные морфемы, даже эмоциональный окрас слов в тексте, зашивая это в программу. Роботы нуждаются в таких технологиях, для них это как диалоговое окно с человеком, причем речь идет не просто о понимании, но и об ответной реакции и обучении новым понятиям.
3. Речевая аналитика
Если обработка языка касается текстовой информации, то речевая аналитика — звуковой. В первую очередь это распознавание речи, которое к 2019 году уже прочно вошло в быт людей. Следующий шаг — синтез речи, совершенствование голосовых качеств самого робота и/или программы до уровней человеческого общения.
4. Принятие решений
По-другому эту технологию можно назвать автоматизацией процессов, когда они проходят без участия человека. Поскольку опять же мы говорим о слабом ИИ, заточенном под решение отдельных задач, технологии принятия решений являются едва ли не самыми понятными по своему назначению. Авторы обзора выделяют несколько сфер применения таких технологий:
- навигация, например обход препятствий, запоминание и учет пройденного пути, локализация себя в пространстве;
- обучение путем демонстраций, когда робот заучивает показанные визуально или механически действия;
- эмоциональное взаимодействие, для которого машине нужно понимать настроение стоящего перед тобой человека, накладывать его на свои особенности «характера» и выдавать результат в виде «мимики» или «эмоций»;
- автоматизация машинного обучения, то есть снижение участия в нем человека, частичный перевод на самообучение.
Разумеется, такие технологии должны применяться совместно с другими: самостоятельная навигация вместе с компьютерным зрением, а эмоции — вместе с речевой аналитикой.
5. Рекомендательные системы
Отдаленно эта технология схожа с принятием решений, но аналитики Сбербанка выделили ее отдельным пунктом. Причина — потенциал широкого применения именно рекомендательных систем в сервисной робототехнике. Речь идет о предложении товаров и услуг, таргетированной рекламе, подборке кинофильмов и музыки. Применительно же к роботам технология может привести к распространению роботов-официантов или продавцов-консультантов.
Индустрия моды как поле для внедрения инноваций
Настоящее и будущее
Многие из указанных выше технологий уже применяются в робототехнике, причем не только в прототипах, но и в массовом производстве. Наибольший путь на данный момент пройден в областях компьютерного зрения и обработки естественного языка — другими словами, в распознавании визуальной и текстовой информации.
Уже сейчас существуют роботизированные системы, успешно применяющие те или иные наработки в области искусственного интеллекта. К самым известным аналитики Сбербанка относят три типа роботов:
- самоуправляемые автомобили. Пока это именно самоуправляемые, а не беспилотные транспортные средства. По закону водитель все равно необходим, хотя значительную работу по восприятию и оценке окружающей действительности проводит именно машина;
- промышленные роботы. На производстве они применяются уже достаточно долго (например, высокоточные станки или манипуляторы для сборки машин), но технологии ИИ начали проникать сюда недавно, например машинное обучение роботов, призванных корректировать работу сервомоторов, или же использование компьютерного зрения для оценки того, как лучше упаковать продукт;
- кухонные роботы. Компьютерное зрение помогает им определить местонахождение ингредиентов и утвари и составить план приготовления блюда.
В будущем развитие робототехники будет происходить в первую очередь за счет более широкого и глубокого внедрения ИИ, а не совершенствования материально-технической базы, уверены авторы обзора. Перспективы развития рынка они разделяют на краткосрочные и долгосрочные, правда, конкретных дат не называют.
1. Краткосрочные инновации:
- захват объектов и манипуляция ими будут доведены до уровня действий человека;
- мобильность роботов, преодоление ими препятствий также сравняются по возможностям с человеческими умениями;
- разговор с роботом будет неотличим от разговора с человеком;
- затраты и время на программирование роботов будут сокращаться, что сделает их самих дешевле, а внедрение автоматизации — шире.
- по умолчанию каждый робот сможет решать любые задачи, присущие слабому (узкоспециальному) ИИ;
- в рамках решения своих задач роботы станут полностью автономными, тогда как выход за их пределы потребует вмешательства человека;
- непрерывный обмен информацией и какими-то удачными решениями между роботами ускорит процесс самообучения;
- роботы начнут не просто общаться, как люди, они смогут планировать поведение с учетом возможного эффекта на окружающих, по сути выработают социальный интеллект;
- благодаря технологиям ИИ роботы получат не просто базовые знания по определенному виду деятельности, но и станут считаться высококлассными специалистами, например в качестве продавцов или медсестер.