Работа карбюраторного двигателя: Карбюраторный двигатель: устройство, принцип работы, характеристики

Содержание

Карбюраторный двигатель: устройство, принцип работы, характеристики

Карбюраторный двигатель — это отдельный вид двигателя внутреннего сгорания (ДВС) с наружным формированием смеси. В карбюраторном двигателе внутреннего сгорания горючая смесь по коллектору проходит в цилиндры двигателя и вырабатывается в карбюраторе.

Карбюратор — конструкция в системе питания двигателей внутреннего сгорания, которая служит для перемешивания бензина с воздухом, образовывает горючую смесь и корректирует ее потребление. На сегодняшний день карбюраторные системы заменяются инжекторными.

Смесь представляет собой пары бензина смешанные с воздухом. Когда она проходит в цилиндры двигателя происходит перемешивание с отработанными газами и образование рабочей смеси, которая в конкретный момент поджигается системой зажигания. Поджигание смеси производится благодаря тому, что бензин поступает в газообразном виде и имеется достаточное количество воздуха для горения.

Карбюраторные двигатели подразделяются на четырехтактные и двухтактные. Рабочий цикл четырехтактного карбюраторного двигателя складывается из четырех тактов, они состоят из четырех полуоборотов коленчатого вала; двухтактные же состоят из двух полуоборотов коленчатого вала. Двухтактные двигатели наиболее легкие и получили свое применение в мотоциклах, мотокультиваторах, бензопилах и в других аппаратах.

Двигатели этого типа делятся на два подтипа:

  • Атмосферные, где рабочая смесь проходит благодаря разреживанию в цилиндре при вбирающем движении поршня;
  • Двигатели с наддувом. В них запуск горючей смеси в цилиндр осуществляется под воздействием давления, которое производится компрессором для расширения мощности двигателя. В различные времена использовались спирт, газ, керосин, бензин, но наиболее используемыми остались бензиновые и газовые двигатели.

Устройство карбюраторного двигателя

Общее устройство наиболее простого карбюратора заключает в себе поплавковую камеру с поплавком, жиклёр с распылителем, диффузор и дроссельную заслонку.

Если рассмотреть строение двигателя Л-12/4, то в блоке имеется четыре цилиндра. Вращение коленвала происходит на трех подшипниках. Центральный подшипник прикреплен к валу втулкой. На передней части вала прикрепляется маховик, который приводит в действие детали механизма и скапливает кинетическую энергию, она нужна для движения коленвала в период подготовительных тактов.

Смазка деталей происходит благодаря разбрызгиванию, шестеренчатый насос помогает началу движения распредвала и подает масло, которое разбрызгивается черпаками, происходит зажигание. Радиатор оснащен вентилятором, который служит для охлаждения воды.

На картере установлен сапун, который снижает давление благодаря выпуску газов.

Также имеется глушитель, который уменьшает шум от выхода отработанных газов. Количество оборотов коленчатого вала в автоматическом режиме устанавливает регулятор.

У двигателей ГАЗ-МК верхний отдел картера сделан из чугуна вместе с устройством цилиндров, которые охвачены водяной рубашкой и перекрыты головкой из чугуна, где и расположены камеры сгорания. Также имеются разъемы для свечей зажигания.

Водяная рубашка подсоединена к системе охлаждения. Низ двигателя затянут стальным поддоном, который выполняет функцию емкости для масла. Также там закреплен масляный насос, который приводит в движение распредвал.

Вращение коленчатого вала происходит также на трех подшипниках. Их вкладыши заполнены баббитом, где имеются смазочные канавки.

Чугунные крышки подшипников прикрепляются к блоку двумя болтами.

Передний сальник коленвала сделан из двух частей и представляет сердечник, который окружен платиной асбеста. Поршни сделаны из алюминия и скреплены шатуном полым стальным пальцем. Маховик прикреплен к коленвалу. Распредвал вращается на трех подшипниках и приводится в движение двумя шестернями.

Клапаны двигателя находятся справа. Система питания включает в себя бензобак, бензопроводы, отстойник, карбюратор и воздушный фильтр.

Бензобак находится выше карбюратора, поэтому топливо поступает самотеком.

Уровень масла в картере определяется специальным щупом. Охлаждение двигателя водяное. Радиатор размещен с задней стороны двигателя, водяной насос — с передней стороны. Вода, которая двигается по трубкам радиатора, остывает при помощи воздушного потока от вентилятора.

Принцип работы карбюраторного двигателя

Принцип действия карбюраторного двигателя относительно простой и складывается из четырех тактов, которые совпадают с движением вверх и вниз в последовательности один за одним

:

  • Первый такт — впуск; клапан впуска отворяется и в цилиндр доставляется новая смесь от системы питания.
  • Второй такт — сжатие; поршень сдавливает горючую смесь в камере сгорания. Все клапаны прикрыты.
  • Третий такт — расширение; происходит возгорание сдавленной горючей смеси от свечи зажигания. Смесь сжигается достаточно быстро при неизменном объеме, который соответствует объему самой камеры сжатия. Это основная характерность работы карбюраторного двигателя. При перегорании формируются газы, которые двигают поршень книзу и передают движение коленвалу.
  • Четвертый такт — впрыск; коленвал вращается и выбрасывает из цилиндра отработанные газы через приоткрытый клапан выпуска.

На этом один рабочий цикл карбюраторного двигателя заканчивается.

При первом такте клапан впуска уже в открытом виде при подходе поршня и благодаря высокой скорости движения поршня рабочая смесь продвигается к цилиндру и еще какое-то время при поднятии поршня во втором такте.

Искра поджигает рабочую смесь до того, как в цилиндре образуется высокое давление. В четвертом такте клапан выпускает отработанные испарения, чем очищает цилиндр еще до подхода поршня. Однако выход газов не прекращается даже после подхода поршня. Затем происходит запуск новой порции рабочей смеси, которая опять проходит в цилиндр.

Отсюда следует, что в работе между первым и четвертым тактом единовременно открываются клапаны впуска и выпуска, то есть происходит перекрытие клапанов. За момент перекрытия цилиндр очищается и в нем происходит разрежение, которое помогает выгоднее заполнить цилиндр горючей смесью при первом такте.

В таком двигателе происходит наружное образование рабочей смеси с ее сжатием и вынужденным поджиганием. На сегодняшний день как топливо чаще используется бензин, но они могут отлично выполнять свою работу и на газу.

Также популярны дизельные двигатели, где поджигание происходит от сжатия, их принцип работы зависит от нагревания газа при сжатии. Когда сжатие повышается, температура также поднимается. В это время в камеру сгорания через форсунку происходит впрыск топлива, которое поджигается и от полученных газов поршень передвигается. Сгорание топлива происходит после начала движения поршня.

Выше указан принцип работы одноцилиндрового двигателя, но он не способен создать условия непрерывного вращения с одинаковой скоростью. Расширенные газы оказывают действие на коленвал для его 1/4 части оборота, оставшиеся ¾ оборота движения поршня происходят по инерции.

Для ликвидации такой недоработки двигатели делают многоцилиндровыми, что способствует наиболее равномерному вращению и неизменному крутящему моменту.

Характеристики карбюраторного двигателя

Работа двигателя определяется его мощностью, действенным давлением, крутящим моментом, скоростью и частотой вращения коленчатого вала и потребление топлива.

Мощность карбюраторного двигателя, а также его крутящий момент подчиняются скорости вращения коленвала и высоты давления.

Скоростная характеристика карбюраторного двигателя устанавливается наивысшей мощностью, которую реально получить от давления при разной частоте вращения коленвала.

При небольшой скорости движения коленчатого вала давление в цилиндрах невысокое и мощность двигателя, соответственно, тоже небольшая. При ускорении вращения коленвала и давление поднимается, так как горючая смесь сгорает быстрее.

Потребление топлива увеличивается при небольшой частоте вращения коленчатого вала, так как процесс сгорания проходит медленнее, теплоотдача большая, а при увеличении частоты вращения механические и тепловые затраты увеличиваются.

Скоростная характеристика дизельного двигателя определяется при недвижимой рейке топливного насоса, который дает высокую подачу топлива на конкретном режиме скорости и бездымной эксплуатации.

При заведенном двигателе автомобиля количество вращений коленвала меняется. Если беспричинно увеличивается потребление топлива, то происходит это благодаря ухудшению рабочего процесса двигателя.

Управление карбюратором

Как правило, действиями карбюратора руководит водитель автомобиля. На отдельных моделях карбюраторов применялись вспомогательные системы, которые немного автоматизировали управление карбюратором.

Для того чтобы управлять дроссельной заслонкой наиболее часто пользуются педалью газа, которая обуславливает ее подвижность при содействии системы тяг либо тросового привода. Тяга, как правило, лучше, однако механизм привода куда сложнее и сдерживает способность механизма по компоновке подкапотной площади. Привод тягами был популярен до 1970 года, потом стали чаще использоваться тросики из металла.

На старых машинах чаще предполагалась двойная система привода дроссельной заслонки карбюратора: вручную рычагом либо от ноги, при помощи педали. Если надавливать на педаль, то рычаг не двигается, а если перемещать рычаг, то педаль опускается.

Последующее открытие дросселя можно совершать педалью. Когда педаль опускается — дроссель остается в таком же положении, в котором зафиксировался при управлении рукой. К примеру, на «Волге» ГАЗ-21 на панели приборов был размещен рычаг для управления рукой, при его движении можно достичь постоянного функционирования холодного двигателя без действия воздушной заслонки либо применять «постоянный газ». На грузовиках «постоянный газ» применялся для облегчения передвижения задним ходом.

Воздушная заслонка может быть оснащена механическим либо автоматическим приводом. Если привод механический, то водитель закрывает ее при участии рычага. Автоматический привод очень популярен в других странах, а в России не «прижился» из-за своей ненадежности и недолгим сроком службы.

Регулировки карбюратора

Карбюратор — устройство, которое имеет наименьшее количество регулировок, но нуждается в хорошо отлаженной системе. Неорганизованная эксплуатация карбюратора сильно действует на функциональность двигателя в целом. При плохой регулировке карбюратора снижается экономичность двигателя и повышается токсичность отработанного газа.

Подходящие виды регулирования карбюратора:

  • «Винт количества» — функционирование на холостом ходу;
  • «Винт качества» — насыщенность рабочей смеси (как результат, повышение токсичности выхлопных газов) на холостом ходу.

В период использования нужно прослеживать дееспособность нижеуказанных узлов:

  1. Действие клапана и схема холостого хода.
  2. Работа насоса (запаздывание действия, объем и время впрыска бензина).
  3. Размеренность работы, беспрепятственное движение, возврат пружиной и нужная степень открытия дроссельной заслонки.
  4. Действие холодного запуска (закрывание воздушной и степень открывания дроссельной и воздушной заслонок)
  5. Деятельность поплавковой конструкции (необходимое количество топлива в поплавковой камере, непроницаемость клапана).
  6. Пропускная возможность жиклеров.

На работоспособность карбюратора воздействуют:

  • Система регулирования карбюратора.
  • Установка пропуска воздуха (воздушный фильтр, обогрев воздуха).
  • Система подачи топлива (бензонасос, фильтры, заборники).
  • Трубка для слива излишков бензина.
  • Непроницаемость впускного канала, который расположен за карбюратором.
  • Нарушение клапанного устройства.
  • Качество топлива.

Карбюраторный двигатель: описание,характеристики,фото,видео,принцип работы

Nevada 1976Карбюраторный двигатель: описание,характеристики,фото,видео,принцип работы 0 Comment

Содержание статьи

Карбюраторный двигатель — один из типов двигателя внутреннего сгорания с внешним смесеобразованием.

В карбюраторном двигателе топливно-воздушная смесь, поступающая по впускному коллектору в цилиндры двигателя, приготавливается в специальном приборе — карбюраторе. Также карбюраторные двигатели разделяются на двигатели без наддува или атмосферные, у которых впуск воздуха или горючей смеси осуществляется за счет разряжения в цилиндре при всасывающем ходе поршня; двигатели с наддувом, у которых впуск воздуха или горючей смеси в рабочий цилиндр происходит под давлением, создаваемым турбокомпрессором, с целью увеличения заряда воздуха и получения повышенной мощности и КПД двигателя;

В качестве топлива для карбюраторного двигателя в разное время применялись спирт, керосин, лигроин, бензин. Наибольшее распространение получили бензиновые карбюраторные двигатели.

Карбюратор — устройство в системе питания карбюраторных двигателей внутреннего сгорания, предназначенное для смешивания бензина и воздуха, создания горючей смеси и регулирования её расхода. В настоящее время карбюраторные системы подачи топлива вытесняются инжекторными.

Простейший карбюратор состоит из четырёх основных элементов: поплавковой камеры (10) с поплавком (3), жиклёра (9) с распылителем (7), диффузора (6) и дроссельной заслонки (5).

Топливо по трубке (1) поступает из бака в поплавковую камеру (10). В поплавковой камере плавает пустотелый, обычно латунный поплавок (3), на который опирается запорная игла (2). Когда уровень топлива в поплавковой камере достигнет необходимой высоты, поплавок всплывёт настолько, что заставит запорную иглу перекрыть трубку (1), прекращая подачу топлива в поплавковую камеру. По мере расходования топлива его уровень в поплавковой камере понижается, поплавок опускается, и запорная игла снова открывает подачу топлива, таким образом в поплавковой камере поддерживается постоянный уровень топлива, что очень важно для правильной дозировки подачи топлива.

Из поплавковой камеры топливо поступает через жиклёр (9) в распылитель (7). Количество топлива, вытекающего из распылителя (7), зависит при прочих равных условиях от размеров и формы жиклёра.

При движении поршня в такте впуска давление в цилиндре снижается. При этом наружный воздух засасывается в цилиндр через карбюратор и впускной трубопровод, проходя через воздушную трубу (8) карбюратора, в которой находится диффузор (6). В самой узкой части диффузора помещается конец распылителя. В сужающейся части диффузора скорость потока воздуха увеличивается, а давление воздуха уменьшается.

Благодаря отверстию (4) в поплавковой камере поддерживается атмосферное давление, в результате под влиянием разности давлений происходит истечение топлива из распылителя. Топливо, вытекающее из распылителя, раздробляется струями воздуха, распыляется, частично испаряется и, перемешиваясь с воздухом, образует горючую смесь. Как правило, вместо одного диффузора используется двойной или даже тройной диффузор. Дополнительные диффузоры расположены концентрически в главном диффузоре и имеют небольшие размеры. Через них проходит только часть общего потока воздуха. Вследствие высокой скорости в центральной части при небольшом сопротивлении основному потоку воздуха достигается более качественное приготовление горючей смеси.

Количество горючей смеси, поступающей в цилиндры двигателя, а следовательно, и мощность двигателя регулируется дроссельной заслонкой (5), которая обычно приводится в движение педалью акселератора (или ручным приводом у мотоциклов и некоторых автомобилей).

Принцип работы карбюраторного двигателя

Принцип действия карбюраторного двигателя относительно простой и складывается из четырех тактов, которые совпадают с движением вверх и вниз в последовательности один за одним:

  • Первый такт — впуск; клапан впуска отворяется и в цилиндр доставляется новая смесь от системы питания.
  • Второй такт — сжатие; поршень сдавливает горючую смесь в камере сгорания. Все клапаны прикрыты.
  • Третий такт — расширение; происходит возгорание сдавленной горючей смеси от свечи зажигания. Смесь сжигается достаточно быстро при неизменном объеме, который соответствует объему самой камеры сжатия. Это основная характерность работы карбюраторного двигателя. При перегорании формируются газы, которые двигают поршень книзу и передают движение коленвалу.
  • Четвертый такт — впрыск; коленвал вращается и выбрасывает из цилиндра отработанные газы через приоткрытый клапан выпуска.

На этом один рабочий цикл карбюраторного двигателя заканчивается.

При первом такте клапан впуска уже в открытом виде при подходе поршня и благодаря высокой скорости движения поршня рабочая смесь продвигается к цилиндру и еще какое-то время при поднятии поршня во втором такте.

Искра поджигает рабочую смесь до того, как в цилиндре образуется высокое давление. В четвертом такте клапан выпускает отработанные испарения, чем очищает цилиндр еще до подхода поршня. Однако выход газов не прекращается даже после подхода поршня. Затем происходит запуск новой порции рабочей смеси, которая опять проходит в цилиндр.

Отсюда следует, что в работе между первым и четвертым тактом единовременно открываются клапаны впуска и выпуска, то есть происходит перекрытие клапанов. За момент перекрытия цилиндр очищается и в нем происходит разрежение, которое помогает выгоднее заполнить цилиндр горючей смесью при первом такте.

В таком двигателе происходит наружное образование рабочей смеси с ее сжатием и вынужденным поджиганием. На сегодняшний день как топливо чаще используется бензин, но они могут отлично выполнять свою работу и на газу.

Также популярны дизельные двигатели, где поджигание происходит от сжатия, их принцип работы зависит от нагревания газа при сжатии. Когда сжатие повышается, температура также поднимается. В это время в камеру сгорания через форсунку происходит впрыск топлива, которое поджигается и от полученных газов поршень передвигается. Сгорание топлива происходит после начала движения поршня.

Регулировки 

Карбюратор — устройство, имеющее минимум регулировок, но требующее исправной работы узлов и механизмов. Работоспособность карбюратора и его техническое состояние существенно влияют на работу двигателя. Нарушение регулировки карбюратора приводит к ухудшению экономичности, приёмистости двигателя, а также к увеличению токсичности отработавших газов.

Доступные регулировки самого карбюратора:

  1. «Винт количества» — обороты в режиме холостого хода
  2. «Винт качества» — обогащённость топливо воздушной смеси (и, как следствие, содержание токсичного угарного газа в выхлопных газах) в режиме холостого хода.

В процессе эксплуатации необходимо проверять и восстанавливать работоспособность следующих узлов:

  1. работа клапана (герметичность) экономайзера и системы холостого хода
  2. работа ускорительного насоса (задержка срабатывания, количество и время впрыска топлива, направленность топливного распылителя)
  3. плавность работы, свободный ход, возвращение пружиной и необходимый уровень приоткрытия закрытой ДЗ
  4. работу системы холодного запуска (закрытие воздушной, и приоткрытие дросельной и воздушной заслонок)
  5. работу устройства открытия второй ДЗ (если имеется)
  6. работу поплавкового механизма (уровень топлива в поплавковой камере, герметичность запорного клапана, отсутствие дефектов поплавка, и т.д.)
  7. работу эмульсионных колодцев и распылителей, пропускная способность жиклёров
  8. отсутствие неучтённых подсосов воздуха

Так же на работу карбюратора оказывают своё влияние:

  1. механизмы управления карбюратором
  2. устройство подачи воздуха (воздушный фильтр, система подогрева воздуха в холодное время года)
  3. система подачи топлива (бензонасос, бензофильтры, заборник, топливные магистрали, вентиляция бака)
  4. система вентиляции картера двигателя
  5. сливная трубка избытка топлива, впускного коллектора
  6. герметичность впускного тракта после карбюратора
  7. негерметичность/неисправность клапанного механизма
  8. качество и состав топлива

Характеристики 

Работа двигателя определяется его мощностью, действенным давлением, крутящим моментом, скоростью и частотой вращения коленчатого вала и потребление топлива.

Мощность карбюраторного двигателя, а также его крутящий момент подчиняются скорости вращения коленвала и высоты давления.

Скоростная характеристика карбюраторного двигателя устанавливается наивысшей мощностью, которую реально получить от давления при разной частоте вращения коленвала.

При небольшой скорости движения коленчатого вала давление в цилиндрах невысокое и мощность двигателя, соответственно, тоже небольшая. При ускорении вращения коленвала и давление поднимается, так как горючая смесь сгорает быстрее.

Потребление топлива увеличивается при небольшой частоте вращения коленчатого вала, так как процесс сгорания проходит медленнее, теплоотдача большая, а при увеличении частоты вращения механические и тепловые затраты увеличиваются.

Скоростная характеристика дизельного двигателя определяется при недвижимой рейке топливного насоса, который дает высокую подачу топлива на конкретном режиме скорости и бездымной эксплуатации.

При заведенном двигателе автомобиля количество вращений коленвала меняется. Если беспричинно увеличивается потребление топлива, то происходит это благодаря ухудшению рабочего процесса двигателя.

Управление 

Обычно работой карбюратора управляет водитель автомобиля. На некоторых моделях карбюраторов использовались дополнительные системы, частично автоматизировавшие управление им.

Для управления дроссельной заслонкой на автомобилях обычно используется педаль газа. Она может приводить её в движение при помощи системы тяг или тросового привода. Тяги в целом надёжнее, но конструкция привода получается сложнее и ограничивает возможности конструктора по компоновке подкапотного пространства. Привод тягами широко использовался в прежние годы, но начиная с 1970-х годов получила распространение система с металлическим тросиком. Системы с пневмо- или электромеханическим приводом распространения на карбюраторных двигателях не получили.

На старых автомобилях часто предусматривалась двойная система привода дроссельной заслонки карбюратора: от руки, рычажком или вытяжной рукояткой («постоянный газ»), и от ноги — педалью. Ручное и ножное управления связывалось между собой так, что при нажатии на педаль рукоятка ручного управления остаётся неподвижной, а при её вытягивании педаль опускается. Дальнейшее открытие дросселя можно было производить педалью. При отпускании педали дроссель остаётся в положении, установленном ручным управлением. Например, на «Волге» ГАЗ-21 на панели приборов справа от радиоприёмника была расположена рукоятка ручного управления дроссельной заслонкой, дублирующая педаль газа. Вытянув её, можно было добиться устойчивой работы холодного двигателя без использования воздушной заслонки, или использовать для установления «постоянного газа». На грузовых автомобилях режим «постоянного газа» служил в частности для упрощения движения задним ходом.

На мотоциклах и некотором числе автомобилей применяется ручное управление дросселем, осуществляемое специальной рукояткой на руле через тросик.

Воздушная заслонка может иметь механический или автоматический привод. В первом случае её закрывает водитель при помощи рукоятки, размещённой обычно на панели приборов. Автоматический привод широко применялся за границей, а в практике отечественного автопрома распространения практически не получил ввиду низкой надёжности, недолговечности и ненадёжной работы при характерных для климата большей части территории СССР/России больших перепадах температур. В этом случае воздушную заслонку закрывал биметаллический или церезиновый термоэлемент, обогреваемый жидкостью из системы охлаждения. По мере прогрева двигателя, термоэлемент нагревался, расширялся и открывал воздушную заслонку. В иных системах использовался электромеханический привод с датчиком температуры. Из отечественных автомобилей, такое пусковое устройство имели только карбюраторы отдельных моделей ВАЗ.

Очень широко распространён полуавтоматический привод воздушной заслонки. В этом случае она закрывается водителем вручную, а после пуска двигателя автоматически приоткрывается диафрагмой, работающей от возникающего во впускном коллекторе двигателя разрежения. Это предотвращало возможную остановку двигателя из-за переобогащения рабочей смеси и несколько снижало расход топлива на прогрев. Пусковую диафрагму имели практически все отечественные карбюраторы, разработанные после начала 1960-х годов. До этого некоторые модели использовали менее совершенный кулачковый механизм, немного приоткрывавший дроссельную заслонку при закрывании воздушной.

Очиститель карбюратора: описание,виды,чистка,фото,видео.
Жиклер карбюратора: описание,виды,замена,ремонт,фото,видео.
Как правильно разобрать и собрать карбюратор?

Система питания карбюраторных двигателей

Как работает карбюратор?

Как работает карбюратор? — Объясните этот материал

Вы здесь: Домашняя страница > Инжиниринг > Карбюраторы

  • Дом
  • индекс А-Я
  • Случайная статья
  • Хронология
  • Учебное пособие
  • О нас
  • Конфиденциальность и файлы cookie

Реклама

Топливо плюс воздух равно движению — это основная наука, стоящая за большинством транспортных средств. которые путешествуют по земле, по морю или по небу. Автомобили, грузовики и автобусы превращают топливо в энергию, смешивая его с воздухом и сжигая в металлические цилиндры внутри их двигателей. Точно сколько топлива и воздуха потребности двигателя меняются от момента к моменту, в зависимости от того, как долго он работает, как быстро вы едете и множество других факторы. В современных двигателях используется система с электронным управлением. позвонил впрыск топлива для регулирования топливно-воздушной смеси так что это ровно с минуты поворота ключа до момента переключения двигатель снова выключается, когда вы достигаете пункта назначения. Но пока эти были изобретены умные устройства, практически все двигатели полагались на изобретательные устройства для смешивания топлива и воздуха, называемые карбюраторами (пишется «карбюратор» в некоторых странах и часто сокращается до «карбюратора»). Что они собой представляют и как они работают? Давайте посмотрим поближе!

Работа: Коротко о карбюраторах: они добавляют топливо (красный) в воздух (синий), чтобы получилась смесь, подходящая для сгорания в цилиндрах. Цилиндры современных автомобилей более эффективно питаются системами впрыска топлива, которые потребляют меньше топлива и меньше загрязняют окружающую среду. Но вы по-прежнему найдете карбюраторы в двигателях старых автомобилей и мотоциклов, а также в компактных двигателях газонокосилок и бензопил.

Содержание

  1. Как двигатели сжигают топливо
  2. Что такое карбюратор?
  3. Кто изобрел карбюратор?
  4. Как работает карбюратор?
  5. Узнать больше

Как двигатели сжигают топливо

Двигатели — это механические вещи, но они тоже химические вещества: они разработан вокруг химической реакции, называемой сгоранием : когда вы сжигаете топливо в воздухе, вы выделяете тепловую энергию и производите углерод диоксид и вода как продукты жизнедеятельности. Для эффективного сжигания топлива вам должны использовать много воздуха. Это в равной степени относится и к автомобильному двигателю. что касается свечи, костра на открытом воздухе, угля или дрова в чьем-то доме.

С костром вам никогда не придется беспокойтесь о том, что у вас слишком много или слишком мало воздуха. При пожарах в помещении не хватает воздуха и гораздо важнее. Слишком мало кислорода вызовет пожар в помещении (или даже устройство для сжигания топлива, такое как газовая печь центрального отопления (котел), чтобы производят опасные загрязнения воздуха, в том числе токсичные угарный газ.

Рекламные ссылки

Работа: Теоретически двигателю автомобиля требуется в 14,7 раз больше воздуха, чем топлива, чтобы топливовоздушная смесь сгорала должным образом. Это называется стехиометрической смесью и получается 94 процента воздуха и 6 процентов топлива. На практике соотношение может быть другим.

С автомобильным двигателем все немного сложнее. Если у вас есть достаточно атомов кислорода, чтобы сжечь все ваши атомы топлива, это называется стехиометрическая смесь . (Стехиометрия является частью химии, химический эквивалент проверки того, что у вас достаточно каждого ингредиента прежде чем приступить к приготовлению пищи по рецепту.) В случае автомобильного двигателя, соотношение обычно составляет около 14,7 частей воздуха на 1 часть топлива (хотя это зависит от того, из чего именно состоит топливо). Слишком много воздуха и недостаточно топлива означает, что двигатель горит «бедный», когда слишком много топлива и недостаточно воздуха называется сжигание «богатых». Немного избыточное количество воздуха (слегка обедненная смесь) даст лучшую экономию топлива, а небольшое количество воздуха (слегка богатая смесь) даст лучшую производительность. Иметь слишком много воздуха так же плохо, как и слишком маленький; оба вредны для двигателя по-разному.

«Карбюратор называют «Сердцем» автомобиля, и нельзя ожидать, что двигатель будет работать правильно, выдавать необходимую мощность или работать плавно, если его «сердце» не выполняет свои функции должным образом. »

Эдвард Кэмерон, The New York Times, 1910

Что такое карбюратор?

Бензиновые двигатели рассчитаны на всасывание точно необходимого количества воздуха, поэтому топливо сгорает правильно, независимо от того, запускается ли двигатель холодным или греется на максимальной скорости. Правильный подбор топливно-воздушной смеси работа умного механического устройства под названием карбюратор : а трубка, которая пропускает воздух и топливо в двигатель через клапаны, смешивая их вместе в разных количествах, чтобы удовлетворить широкий спектр различных условия вождения.

Вы можете подумать, что слово «карбюратор» довольно странное, но оно происходит от глагола «карбюратор». Это химический термин, означающий обогащение газа путем соединения его с углеродом. или углеводороды. Итак, технически карбюратор — это устройство, которое насыщает воздух (газ) топливом. (углеводород).

Фото: Регулировка ручного карбюратора «дроссель» (клапан впуска воздуха) в двигателе DeSoto Firedome 1956 года выпуска. Фото Лори Пирсон предоставлено Корпусом морской пехоты США и DVIDS.

Кто изобрел карбюратор?

Карбюраторы существуют с конца 19 века. века, когда они были впервые разработаны пионером автомобилестроения (и основатель Mercedes) Карл Бенц (1844–1929). Раньше были попытки «карбюрации» другими способами. Например, французский пионер двигателей Жозеф Этьен Ленуар (1822–1819 гг.).00) изначально использовал вращающийся цилиндр с прикрепленными губками, которые погружались в топливо при повороте, вынимая его из контейнера и перемешивая с воздухом. [1]

На приведенной ниже диаграмме, которую я раскрасил для облегчения понимания, показан исходный Карбюратор Benz 1888 года выпуска; основной принцип работы (объясненный в рамке ниже) остается прежним и по сей день.

Иллюстрация: очень упрощенная схема оригинального карбюратора Карла Бенца из его патент 1888 г. Топливо из бака (синий, D) поступает в то, что он назвал генератором (зеленый, A). внизу, где он испаряется. Пары топлива проходят вверх по серой трубе и встречаются с поступающим воздухом. вниз по той же трубе, которая входит из атмосферы через перфорацию вверху. Воздух и топливо смешиваются в красной камере (F), затем проходят через клапан (бирюзовый, G) в цилиндр H, где они сжечь, чтобы сделать власть. Работа из патента США 382 585: Карбюратор Карла Бенца. 8 мая 1888 г., любезно предоставлено Управлением по патентам и товарным знакам США.

Как работает карбюратор?

Фото: Типичный карбюратор не на что смотреть! Фото Дэвида Хоффмана предоставлено ВМС США и Викисклад.

Карбюраторы сильно различаются по конструкции и сложности. Самый простой из возможных по сути большая вертикальная воздушная труба над цилиндрами двигателя с горизонтальная топливная труба, соединенная с одной стороны. Когда воздух течет вниз трубы, он должен проходить через узкий изгиб посередине, который заставляет его ускоряться и заставляет его давление падать. Это перегнулось раздел называется Вентури . Падение давления воздуха создает эффект всасывания, который всасывает воздух через топливную трубку в сторона.

Рисунок: Эффект Вентури: когда жидкость течет в более узкое пространство, ее скорость увеличивается, но давление падает. Это объясняет, почему ветер свистит между зданиями и почему лодки, плывущие параллельно друг другу, часто сталкиваются друг с другом. Это пример закона сохранения энергии: если бы давление не падало, жидкость получала бы дополнительную энергию, втекая в узкое сечение, что нарушало бы один из самых основных законов физики.

Воздушный поток втягивает топливо, чтобы присоединиться к нему, что нам и нужно, но как можно ли отрегулировать топливовоздушную смесь? Карбюратор имеет два поворотных клапаны выше и ниже трубки Вентури. Вверху есть клапан, называемый дросселем , который регулирует количество воздуха, которое может проходить дюйм. Если дроссель закрыт, меньше воздуха проходит через трубу и Вентури всасывает больше топлива, поэтому двигатель получает богатую топливом смесь. Это удобно, когда двигатель холодный, при первом запуске и работает довольно медленно. Под трубкой Вентури есть второй клапан. называется дроссельная заслонка . Чем больше дроссельная заслонка открыта, тем больше воздух проходит через карбюратор и чем больше топлива он всасывает из труба в сторону. Чем больше топлива и воздуха поступает в двигатель, тем высвобождает больше энергии и производит больше мощности, и машина едет быстрее. Вот почему открытие дроссельной заслонки заставляет автомобиль ускоряться: это эквивалентно дуновению костра, чтобы получить больше кислорода и сделать его сгореть быстрее. Дроссель соединен с педалью акселератора в машине или дроссель на руле мотоцикла.

Подача топлива в карбюратор немного сложнее, чем мы описывали до сих пор. К топливной трубе прикреплен своего рода мини-топливный бак, называемый поплавково-питательная камера (небольшой бачок с поплавком и клапаном внутри). Когда камера подает топливо в карбюратор, уровень топлива падает, а вместе с ним падает и поплавок. Когда поплавок опускается ниже определенного уровня, он открывает клапан, пропуская топливо. в камеру, чтобы заправить ее из основного бензобака. Как только камера заполняется, поплавок поднимается, закрывает клапан, и подача топлива снова отключается. ( поплавковая камера работает как туалет, с поплавком эффективно выполняет ту же работу, что и шаровой кран — клапан, который помогает наполнять туалет. с нужным количеством воды после промывки. Что общего у автомобильных двигателей и туалетов? Больше, чем вы могли подумать!)

В общем, вот как это все работает:

  1. Воздух поступает в верхнюю часть карбюратора из воздухозаборника автомобиля, проходя через фильтр, очищающий его от мусора.
  2. При первом запуске двигателя воздушную заслонку (синюю) можно настроить так, чтобы она почти перекрывала верхнюю часть трубы, чтобы уменьшить количество поступающего воздуха (увеличивая содержание топлива в смеси, поступающей в цилиндры).
  3. В центре трубы воздух нагнетается через узкий изгиб, называемый трубкой Вентури. Это ускоряет и приводит к падению его давления.
  4. Падение давления воздуха создает всасывание в топливной трубе (справа), всасывая топливо (оранжевый).
  5. Дроссель (зеленый) — это клапан, который поворачивается для открытия или закрытия трубы. Когда дроссельная заслонка открыта, в цилиндры поступает больше воздуха и топлива, поэтому двигатель производит больше мощности, и автомобиль едет быстрее.
  6. Смесь воздуха и топлива стекает в цилиндры.
  7. Топливо (оранжевое) подается из мини-топливного бака, называемого поплавковой камерой.
  8. Когда уровень топлива падает, поплавок в камере опускается и открывает верхний клапан.
  9. Когда клапан открывается, в камеру поступает больше топлива из основного бензобака. Это заставляет поплавок подниматься и снова закрывать клапан.

Узнать больше

На этом сайте

  • Тормоза
  • Автомобильные бензиновые двигатели
  • Шестерни
  • Дизельные двигатели
  • Колеса и оси

Книги

Для читателей постарше
  • Карбюраторы Holley: Как восстановить Майк Мавигран. КарТех, 2016.
  • Руководство по карбюратору Rochester
  • Майка Стаблфилда. Хейнс, 1994.
  • Карбюраторы Weber от Пэта Брейдена. Книги HP, 1988.
Для младших читателей
  • Car Science by Richard Hammond. Дорлинг Киндерсли, 2007. От материалов, из которых они сделаны, до того, как они рассекают воздух, эта книга объясняет науку, которая заставляет автомобили двигаться (возраст 9–12 лет).

Видео

  • Карбюраторы — пояснение: это видео от Engineering Explained охватывает почти ту же тему, что и моя статья, но рассказывает нам о том, что происходит. Он также распространяется на карбюраторы со второй трубкой Вентури.
  • Карбюраторы поплавкового типа, объяснение Pimpinpenz. Хороший наглядный обзор поплавкового карбюратора с игольчатым клапаном.

Статьи

  • Попрощавшись с карбюраторами, Nascar готовит переход на систему впрыска топлива Пол Стенквист. The New York Times, 20 июля 2011 г. Как Nascar наконец отказалась от карбюраторов в гоночном сезоне 2012 г. и почему это заняло так много времени.
  • Технология; «Прощай, карбюраторы» Джона Холуса. Нью-Йорк Таймс, 22 октября 19 г.81. Статья из архива The Times предвещает появление впрыска топлива в начале 1980-х годов.
  • Новый карбюратор Форда с регулируемой скоростью Вентури от EF Lindsley. Popular Science, август 1976 г. В этой старой статье из архива Pop Sci есть несколько отличных иллюстраций в разрезе различных типов карбюраторов Вентури.

Патенты

Для получения более подробной технической информации см.:

  • Патент США 382,585: Карбюратор Карла Бенца. 8 мая 1888 г. Оригинальное устройство смешения топлива с воздухом, изобретенное в конце 19 в.19 века пионером автомобилестроения Карлом Бенцем.
  • Патент США 1,520,261: Карбюратор Джорджа Ф. Риттера и др., Tillotson Manufacturing. 23 декабря 1924 года. Типичный карбюратор начала 20 века.
  • Патент США 1 938 497: Карбюратор Чарльза Н. Пога. 5 декабря 1933 г. Эта конструкция направлена ​​​​на то, чтобы испарить больше топлива и обеспечить большую мощность двигателя.
  • Патент США 4 501 709: Карбюратор Вентури с регулируемой скоростью работы Тадахиро Ямамото и Тадаки Оота, Nissan. 26 февраля 1985 г. В карбюраторе этого более современного типа размер трубки Вентури автоматически изменяется для поддержания постоянного уровня всасывания.

Каталожные номера

  1. ↑   Газовые и нефтяные двигатели: Практический трактат о внутреннем сгорании Двигатель Уильяма Робинсона. Э. и Ф.Н. Спон, 1890, стр. 175.

Пожалуйста, НЕ копируйте наши статьи в блоги и другие веб-сайты.

Статьи с этого веб-сайта зарегистрированы в Бюро регистрации авторских прав США. Копирование или иное использование зарегистрированных произведений без разрешения, удаление этого или других уведомлений об авторских правах и/или нарушение смежных прав может повлечь за собой серьезные гражданские или уголовные санкции.

Авторские права на текст © Chris Woodford 2009, 2021. Все права защищены. Полное уведомление об авторских правах и условия использования.

Подпишитесь на нас

Оцените эту страницу

Пожалуйста, оцените или оставьте отзыв на этой странице, и я сделаю пожертвование WaterAid.

Сохранить или поделиться этой страницей

Нажмите CTRL + D, чтобы добавить эту страницу в закладки на будущее или рассказать о ней друзьям:

Цитировать эту страницу

Вудфорд, Крис. (2009/2021) Карбюраторы. Получено с https://www.explainthatstuff.com/how-carburetors-work.html. [Доступ (вставьте дату здесь)]

Подробнее на нашем веб-сайте…

  • Связь
  • Компьютеры
  • Электричество и электроника
  • Энергия
  • Машиностроение
  • Окружающая среда

  • Гаджеты
  • Домашняя жизнь
  • Материалы
  • Наука
  • Инструменты и инструменты
  • Транспорт

↑ Вернуться к началу

Как работает карбюратор?

Как работает карбюратор? — Объясните этот материал

Вы здесь: Домашняя страница > Инжиниринг > Карбюраторы

  • Дом
  • индекс А-Я
  • Случайная статья
  • Хронология
  • Учебное пособие
  • О нас
  • Конфиденциальность и файлы cookie

Реклама

Топливо плюс воздух равно движению — это основная наука, стоящая за большинством транспортных средств. которые путешествуют по земле, по морю или по небу. Автомобили, грузовики и автобусы превращают топливо в энергию, смешивая его с воздухом и сжигая в металлические цилиндры внутри их двигателей. Точно сколько топлива и воздуха потребности двигателя меняются от момента к моменту, в зависимости от того, как долго он работает, как быстро вы едете и множество других факторы. В современных двигателях используется система с электронным управлением. позвонил впрыск топлива для регулирования топливно-воздушной смеси так что это ровно с минуты поворота ключа до момента переключения двигатель снова выключается, когда вы достигаете пункта назначения. Но пока эти были изобретены умные устройства, практически все двигатели полагались на изобретательные устройства для смешивания топлива и воздуха, называемые карбюраторами (пишется «карбюратор» в некоторых странах и часто сокращается до «карбюратора»). Что они собой представляют и как они работают? Давайте посмотрим поближе!

Работа: Коротко о карбюраторах: они добавляют топливо (красный) в воздух (синий), чтобы получилась смесь, подходящая для сгорания в цилиндрах. Цилиндры современных автомобилей более эффективно питаются системами впрыска топлива, которые потребляют меньше топлива и меньше загрязняют окружающую среду. Но вы по-прежнему найдете карбюраторы в двигателях старых автомобилей и мотоциклов, а также в компактных двигателях газонокосилок и бензопил.

Содержание

  1. Как двигатели сжигают топливо
  2. Что такое карбюратор?
  3. Кто изобрел карбюратор?
  4. Как работает карбюратор?
  5. Узнать больше

Как двигатели сжигают топливо

Двигатели — это механические вещи, но они тоже химические вещества: они разработан вокруг химической реакции, называемой сгоранием : когда вы сжигаете топливо в воздухе, вы выделяете тепловую энергию и производите углерод диоксид и вода как продукты жизнедеятельности. Для эффективного сжигания топлива вам должны использовать много воздуха. Это в равной степени относится и к автомобильному двигателю. что касается свечи, костра на открытом воздухе, угля или дрова в чьем-то доме.

С костром вам никогда не придется беспокойтесь о том, что у вас слишком много или слишком мало воздуха. При пожарах в помещении не хватает воздуха и гораздо важнее. Слишком мало кислорода вызовет пожар в помещении (или даже устройство для сжигания топлива, такое как газовая печь центрального отопления (котел), чтобы производят опасные загрязнения воздуха, в том числе токсичные угарный газ.

Рекламные ссылки

Работа: Теоретически двигателю автомобиля требуется в 14,7 раз больше воздуха, чем топлива, чтобы топливовоздушная смесь сгорала должным образом. Это называется стехиометрической смесью и получается 94 процента воздуха и 6 процентов топлива. На практике соотношение может быть другим.

С автомобильным двигателем все немного сложнее. Если у вас есть достаточно атомов кислорода, чтобы сжечь все ваши атомы топлива, это называется стехиометрическая смесь . (Стехиометрия является частью химии, химический эквивалент проверки того, что у вас достаточно каждого ингредиента прежде чем приступить к приготовлению пищи по рецепту.) В случае автомобильного двигателя, соотношение обычно составляет около 14,7 частей воздуха на 1 часть топлива (хотя это зависит от того, из чего именно состоит топливо). Слишком много воздуха и недостаточно топлива означает, что двигатель горит «бедный», когда слишком много топлива и недостаточно воздуха называется сжигание «богатых». Немного избыточное количество воздуха (слегка обедненная смесь) даст лучшую экономию топлива, а небольшое количество воздуха (слегка богатая смесь) даст лучшую производительность. Иметь слишком много воздуха так же плохо, как и слишком маленький; оба вредны для двигателя по-разному.

«Карбюратор называют «Сердцем» автомобиля, и нельзя ожидать, что двигатель будет работать правильно, выдавать необходимую мощность или работать плавно, если его «сердце» не выполняет свои функции должным образом. »

Эдвард Кэмерон, The New York Times, 1910

Что такое карбюратор?

Бензиновые двигатели рассчитаны на всасывание точно необходимого количества воздуха, поэтому топливо сгорает правильно, независимо от того, запускается ли двигатель холодным или греется на максимальной скорости. Правильный подбор топливно-воздушной смеси работа умного механического устройства под названием карбюратор : а трубка, которая пропускает воздух и топливо в двигатель через клапаны, смешивая их вместе в разных количествах, чтобы удовлетворить широкий спектр различных условия вождения.

Вы можете подумать, что слово «карбюратор» довольно странное, но оно происходит от глагола «карбюратор». Это химический термин, означающий обогащение газа путем соединения его с углеродом. или углеводороды. Итак, технически карбюратор — это устройство, которое насыщает воздух (газ) топливом. (углеводород).

Фото: Регулировка ручного карбюратора «дроссель» (клапан впуска воздуха) в двигателе DeSoto Firedome 1956 года выпуска. Фото Лори Пирсон предоставлено Корпусом морской пехоты США и DVIDS.

Кто изобрел карбюратор?

Карбюраторы существуют с конца 19 века. века, когда они были впервые разработаны пионером автомобилестроения (и основатель Mercedes) Карл Бенц (1844–1929). Раньше были попытки «карбюрации» другими способами. Например, французский пионер двигателей Жозеф Этьен Ленуар (1822–1819 гг.).00) изначально использовал вращающийся цилиндр с прикрепленными губками, которые погружались в топливо при повороте, вынимая его из контейнера и перемешивая с воздухом. [1]

На приведенной ниже диаграмме, которую я раскрасил для облегчения понимания, показан исходный Карбюратор Benz 1888 года выпуска; основной принцип работы (объясненный в рамке ниже) остается прежним и по сей день.

Иллюстрация: очень упрощенная схема оригинального карбюратора Карла Бенца из его патент 1888 г. Топливо из бака (синий, D) поступает в то, что он назвал генератором (зеленый, A). внизу, где он испаряется. Пары топлива проходят вверх по серой трубе и встречаются с поступающим воздухом. вниз по той же трубе, которая входит из атмосферы через перфорацию вверху. Воздух и топливо смешиваются в красной камере (F), затем проходят через клапан (бирюзовый, G) в цилиндр H, где они сжечь, чтобы сделать власть. Работа из патента США 382 585: Карбюратор Карла Бенца. 8 мая 1888 г., любезно предоставлено Управлением по патентам и товарным знакам США.

Как работает карбюратор?

Фото: Типичный карбюратор не на что смотреть! Фото Дэвида Хоффмана предоставлено ВМС США и Викисклад.

Карбюраторы сильно различаются по конструкции и сложности. Самый простой из возможных по сути большая вертикальная воздушная труба над цилиндрами двигателя с горизонтальная топливная труба, соединенная с одной стороны. Когда воздух течет вниз трубы, он должен проходить через узкий изгиб посередине, который заставляет его ускоряться и заставляет его давление падать. Это перегнулось раздел называется Вентури . Падение давления воздуха создает эффект всасывания, который всасывает воздух через топливную трубку в сторона.

Рисунок: Эффект Вентури: когда жидкость течет в более узкое пространство, ее скорость увеличивается, но давление падает. Это объясняет, почему ветер свистит между зданиями и почему лодки, плывущие параллельно друг другу, часто сталкиваются друг с другом. Это пример закона сохранения энергии: если бы давление не падало, жидкость получала бы дополнительную энергию, втекая в узкое сечение, что нарушало бы один из самых основных законов физики.

Воздушный поток втягивает топливо, чтобы присоединиться к нему, что нам и нужно, но как можно ли отрегулировать топливовоздушную смесь? Карбюратор имеет два поворотных клапаны выше и ниже трубки Вентури. Вверху есть клапан, называемый дросселем , который регулирует количество воздуха, которое может проходить дюйм. Если дроссель закрыт, меньше воздуха проходит через трубу и Вентури всасывает больше топлива, поэтому двигатель получает богатую топливом смесь. Это удобно, когда двигатель холодный, при первом запуске и работает довольно медленно. Под трубкой Вентури есть второй клапан. называется дроссельная заслонка . Чем больше дроссельная заслонка открыта, тем больше воздух проходит через карбюратор и чем больше топлива он всасывает из труба в сторону. Чем больше топлива и воздуха поступает в двигатель, тем высвобождает больше энергии и производит больше мощности, и машина едет быстрее. Вот почему открытие дроссельной заслонки заставляет автомобиль ускоряться: это эквивалентно дуновению костра, чтобы получить больше кислорода и сделать его сгореть быстрее. Дроссель соединен с педалью акселератора в машине или дроссель на руле мотоцикла.

Подача топлива в карбюратор немного сложнее, чем мы описывали до сих пор. К топливной трубе прикреплен своего рода мини-топливный бак, называемый поплавково-питательная камера (небольшой бачок с поплавком и клапаном внутри). Когда камера подает топливо в карбюратор, уровень топлива падает, а вместе с ним падает и поплавок. Когда поплавок опускается ниже определенного уровня, он открывает клапан, пропуская топливо. в камеру, чтобы заправить ее из основного бензобака. Как только камера заполняется, поплавок поднимается, закрывает клапан, и подача топлива снова отключается. ( поплавковая камера работает как туалет, с поплавком эффективно выполняет ту же работу, что и шаровой кран — клапан, который помогает наполнять туалет. с нужным количеством воды после промывки. Что общего у автомобильных двигателей и туалетов? Больше, чем вы могли подумать!)

В общем, вот как это все работает:

  1. Воздух поступает в верхнюю часть карбюратора из воздухозаборника автомобиля, проходя через фильтр, очищающий его от мусора.
  2. При первом запуске двигателя воздушную заслонку (синюю) можно настроить так, чтобы она почти перекрывала верхнюю часть трубы, чтобы уменьшить количество поступающего воздуха (увеличивая содержание топлива в смеси, поступающей в цилиндры).
  3. В центре трубы воздух нагнетается через узкий изгиб, называемый трубкой Вентури. Это ускоряет и приводит к падению его давления.
  4. Падение давления воздуха создает всасывание в топливной трубе (справа), всасывая топливо (оранжевый).
  5. Дроссель (зеленый) — это клапан, который поворачивается для открытия или закрытия трубы. Когда дроссельная заслонка открыта, в цилиндры поступает больше воздуха и топлива, поэтому двигатель производит больше мощности, и автомобиль едет быстрее.
  6. Смесь воздуха и топлива стекает в цилиндры.
  7. Топливо (оранжевое) подается из мини-топливного бака, называемого поплавковой камерой.
  8. Когда уровень топлива падает, поплавок в камере опускается и открывает верхний клапан.
  9. Когда клапан открывается, в камеру поступает больше топлива из основного бензобака. Это заставляет поплавок подниматься и снова закрывать клапан.

Узнать больше

На этом сайте

  • Тормоза
  • Автомобильные бензиновые двигатели
  • Шестерни
  • Дизельные двигатели
  • Колеса и оси

Книги

Для читателей постарше
  • Карбюраторы Holley: Как восстановить Майк Мавигран. КарТех, 2016.
  • Руководство по карбюратору Rochester
  • Майка Стаблфилда. Хейнс, 1994.
  • Карбюраторы Weber от Пэта Брейдена. Книги HP, 1988.
Для младших читателей
  • Car Science by Richard Hammond. Дорлинг Киндерсли, 2007. От материалов, из которых они сделаны, до того, как они рассекают воздух, эта книга объясняет науку, которая заставляет автомобили двигаться (возраст 9–12 лет).

Видео

  • Карбюраторы — пояснение: это видео от Engineering Explained охватывает почти ту же тему, что и моя статья, но рассказывает нам о том, что происходит. Он также распространяется на карбюраторы со второй трубкой Вентури.
  • Карбюраторы поплавкового типа, объяснение Pimpinpenz. Хороший наглядный обзор поплавкового карбюратора с игольчатым клапаном.

Статьи

  • Попрощавшись с карбюраторами, Nascar готовит переход на систему впрыска топлива Пол Стенквист. The New York Times, 20 июля 2011 г. Как Nascar наконец отказалась от карбюраторов в гоночном сезоне 2012 г. и почему это заняло так много времени.
  • Технология; «Прощай, карбюраторы» Джона Холуса. Нью-Йорк Таймс, 22 октября 19 г.81. Статья из архива The Times предвещает появление впрыска топлива в начале 1980-х годов.
  • Новый карбюратор Форда с регулируемой скоростью Вентури от EF Lindsley. Popular Science, август 1976 г. В этой старой статье из архива Pop Sci есть несколько отличных иллюстраций в разрезе различных типов карбюраторов Вентури.

Патенты

Для получения более подробной технической информации см.:

  • Патент США 382,585: Карбюратор Карла Бенца. 8 мая 1888 г. Оригинальное устройство смешения топлива с воздухом, изобретенное в конце 19 в.19 века пионером автомобилестроения Карлом Бенцем.
  • Патент США 1,520,261: Карбюратор Джорджа Ф. Риттера и др., Tillotson Manufacturing. 23 декабря 1924 года. Типичный карбюратор начала 20 века.
  • Патент США 1 938 497: Карбюратор Чарльза Н. Пога. 5 декабря 1933 г. Эта конструкция направлена ​​​​на то, чтобы испарить больше топлива и обеспечить большую мощность двигателя.
  • Патент США 4 501 709: Карбюратор Вентури с регулируемой скоростью работы Тадахиро Ямамото и Тадаки Оота, Nissan. 26 февраля 1985 г. В карбюраторе этого более современного типа размер трубки Вентури автоматически изменяется для поддержания постоянного уровня всасывания.

Каталожные номера

  1. ↑   Газовые и нефтяные двигатели: Практический трактат о внутреннем сгорании Двигатель Уильяма Робинсона. Э. и Ф.Н. Спон, 1890, стр. 175.

Пожалуйста, НЕ копируйте наши статьи в блоги и другие веб-сайты.

Статьи с этого веб-сайта зарегистрированы в Бюро регистрации авторских прав США. Копирование или иное использование зарегистрированных произведений без разрешения, удаление этого или других уведомлений об авторских правах и/или нарушение смежных прав может повлечь за собой серьезные гражданские или уголовные санкции.

Авторские права на текст © Chris Woodford 2009, 2021. Все права защищены. Полное уведомление об авторских правах и условия использования.

Leave a Comment

Ваш адрес email не будет опубликован. Обязательные поля помечены *