Устройство датчика температуры: типы, устройство, принцип работы, схемы подключения

Содержание

типы, устройство, принцип работы, схемы подключения

Контроль температуры повсеместно задействуется в технологических процессах, позволяя выбирать подходящий режим работы или отслеживать изменения состояния материала. Температурный режим одинаково важен как при включении духовки на кухне, так и в доменных печах при плавлении стали, а отклонение от нормальной работы может привести к аварии и травмированию людей. Чтобы избежать неприятных последствий и обеспечить возможность регулирования степени нагрева используется датчик температуры.

Разновидности, устройство и принцип работы

В ходе развития и совершенствования технологий датчик температуры, как измерительное приспособление, претерпел множественные изменения и модернизации. Благодаря чему сегодня они представлены в большом разнообразии, которые можно разделить по нескольким критериям. Так, в зависимости от способа передачи и отображения данных об измерениях температуры они подразделяются на цифровые и аналоговые. Цифровые устройства являются более современным решением, так как информация в них отображается на дисплее и передается по электронным каналам коммуникации, аналоговые имеют циферблатное отображение данных, электрический или механический способ передачи измерений.

В зависимости от принципа действия все датчики можно подразделить на:

  • термоэлектрические;
  • полупроводниковые;
  • пирометрические;
  • терморезистивные;
  • акустические;
  • пьезоэлектрические.

Термоэлектрические

В основе работы термоэлектрического датчика лежит принцип термопары (см. рисунок 1) – у всех металлов существует определенная валентность (количество свободных электронов на внешних атомарных орбитах, не задействованных в жестких связях). При воздействии внешних факторов, сообщающих свободным электронам дополнительную энергию, они могут покинуть атом, создавая движение заряженных частиц. В случае совмещения двух металлов с различным потенциалом выхода электронов и последующим нагреванием места соединения возникнет разность потенциалов, получившая название эффекта Зеебека.

Рис. 1. Устройство термопары

На практике применяется несколько разновидностей термоэлектрических датчиков температуры, так, согласно п.1.1  ГОСТ Р 50342-92 они подразделяются на:

  • вольфрамрений-вольфрамрениевые (ТВР) – применяется в средах с большой рабочей температурой порядка 2000°С;
  • платинородий-платинородиевые (ТПР) – отличаются высокой себестоимостью и высокой точностью измерений, применяются я в лабораторных измерениях;
  • платинородий-платиновые (ТПП) – оснащаются защитной трубкой из металла и керамической изоляцией, обладают высоким температурным пределом;
  • хромель-алюмелевые (ТХА)  — широко применяются в промышленности, способны охватывать диапазон температуры до  1200°С, используются в кислых средах;
  • хромель-копелевые (ТХК) –  характеризуются средним температурным показателем, монтируются только в неагрессивных средах;
  • хромель-константановые (ТХК) — актуальны для газовых смесей и разжиженных аэрозолей нейтрального или слабокислого состава;
  • никросил-нисиловые (ТНН) – применяются для устройств среднего температурного диапазона, но обладают длительным сроком эксплуатации;
  • медь-константановые (ТМК) – характеризуется наименьшим пределом измерений до 400°С, но отличается устойчивостью к влаге и некоторым категориям агрессивных сред;
  • железо-константановые (ТЖК) – применяются в среде с разжиженной атмосферой или вакуумного пространства.

Такое разнообразие температурных датчиков на основе термопары позволяет охватывать любые сферы человеческой деятельности.

Полупроводниковые

Изготавливаются на основе кристаллов с заданной вольтамперной характеристикой. Такие датчики температуры работают в режиме полупроводникового ключа, аналогично классическому биполярному транзистору, где степень нагревания сравнима с подачей потенциала на базу. При повышении температуры полупроводниковый датчик  начнет выдавать большее значение тока. Как правило, самостоятельно полупроводник не используется для измерения нагрева, а подключается через цепь усилителя (см. рисунок 2).

Рис. 2. Подключение полупроводникового датчика через усилитель

Отличаются широким диапазоном производимых измерений и возможностью подстройки датчика в соответствии с рабочими параметрами оборудования. Являются высокоточным типом, мало зависящим от продолжительности эксплуатации. Обладают небольшими габаритами, за счет чего легко устанавливаются в схемах, радиоэлементах и т. д.

Пирометрические

Работают за счет специальных датчиков – пирометров, которые позволяют улавливать малейшие температурные колебания рабочей поверхности любого предмета. Непосредственно сам чувствительный элемент представляет собой матрицу, реагирующую на определенную частоту температурного диапазона. Этот принцип положен в основу измерений бесконтактным термометром, который получил широкое распространение в период борьбы с коронавирусом. Помимо этого их применение активно используется для тепловизионного контроля конструктивных элементов, оборудования, зданий и сооружений.

Рис. 3. Принцип действия пирометрического датчика

Терморезистивные

Такие датчики температуры выполняются на основе терморезисторов – устройств с определенной зависимостью сопротивления от степени нагрева основного материала. С повышением температуры, изменяется и проводимость резистора, благодаря чему вы можете следить за состоянием нужного объекта.

Основным недостатком терморезистивного датчика  является малый диапазон измеряемой температуры, но он способен обеспечивать хороший шаг измерений и высокую точность в десятых и сотых долях градусов Цельсия. Из-за чего их нередко включают в цепь с применением усилителя, расширяющего рабочие пределы.

Акустические

Акустические датчики температуры функционируют по принципу определения скорости прохождения звуковых колебаний в зависимости от температуры материала или поверхности . Непосредственно сам сенсор производит сравнение скорости звука, генерируемого источником, которая будет отличаться, в зависимости от степени нагрева (см. рисунок 4). Такой тип является бесконтактным и позволяет производить замеры в труднодоступных местах или на объектах повышенной опасности.

Рис. 4. Звуковой датчик температуры

Пьезоэлектрические

Работа датчика основана на эффекте распространения колебаний кварцевого кристалла при прохождении электрического тока. Но, в зависимости от температуры окружающей среды, будет меняться и частота колебаний кристалла. Принцип фиксации температурных изменений заключается в измерении частоты колебаний и последующем сравнении с установленной градуировкой номиналов для разных температур.

Схемы подключения

Основные отличия в подключении датчика температур обуславливаются сферой его применения и конструктивными особенностями. Так, в рамках статьи, мы рассмотрим несколько наиболее распространенных и интересных вариантов. Таковыми является подключение с помощью двухпроводной и трехпроводной схемы.

Рис. 5. Двухпроводная схема подключения

На рисунке 5 приведен вариант двухпроводного присоединения измерительного устройства. Этот принцип рекомендуется для всех датчиков  температуры с небольшим расстоянием до контролируемого объекта. Так как сопротивление самого чувствительного элемента  Rt мало измениться от сопротивления соединительных проводников R1 и R2, соответственно, поправка на измерения будет минимальной.

Рис. 6. Трехпроводная схема подключения

При больших расстояниях, от 150 м и более, подключение датчика следует выполнять по трехпроводной схеме, в которой существенно снижается погрешность на сопротивление в проводах R1, R2, R3.

Рис. 7. Схема подключения датчика температуры двигателя

Практически в каждом современном авто осуществляется постоянный контроль температурных параметров мотора. Поэтому использование датчика является обязательным требованием безопасности. Согласно двухпроводной схемы (рисунок 7) датчик подключается одним выводом на отдельно стоящий концевик капота, который не имеет каких-либо подключений к цепи. А второй вывод, подсоединяется к блоку сигнализации установленным порядком, в соответствии с моделью.

Рис. 8. Схема подключения цифрового датчика температуры

На рисунке 8 приведен пример включения цифрового датчика Dallas. Это модель с тремя выводами, первый из которых, согласно распиновки GND подключается к заземляющему выводу микроконтроллера, второй DATA к выводу PIN 2, а третий к клемме питания +5 В. Между третей и второй ножкой включается резистор на 4,7кОм.

Примение

Сфера применения датчиков температуры охватывает как бытовые приборы, так и оборудование общепромышленного назначения, сельскохозяйственную отрасль, военную промышленность, аэрокосмический сектор. Каждый из вас может встретить их у себя дома в нагревательных приборах – бойлерах, духовках, мультиварках или хлебопечках.

В тяжелой промышленности тепловые сенсоры позволяют контролировать степень нагрева печей, воздуха в рабочей области, состояние трущихся поверхностей. В медицине их используют для контроля температуры в труднодоступных местах или для упрощения различных процедур.

Многие автолюбители часто сталкиваются с анализаторами температуры, контролирующими состояние масла или другой охлаждающей жидкости. На сети железных дорог они позволяют отслеживать нагрев букс и колесных пар. В энергетике с их помощью обследуются контактные соединения и качество прилегания поверхностей.

Как подобрать?

При выборе датчика температуры необходимо руководствоваться такими критериями:

  • если датчик будет соприкасаться или располагаться внутри измеряемой среды, то берется контактная модель, если находиться вне объекта, то бесконтактная;
  • условия и состояние среды, в которой он будет функционировать (влажность, агрессивные вещества и т. д.) должны соответствовать возможностям датчика;
  • шаг и градуировка измерений должны обеспечивать удобную эксплуатацию и датчика, и оборудования;
  • если датчик подлежит замене в ходе эксплуатации, то устанавливаются сменные варианты;
  • при выборе датчика температуры для замены неисправного, лучше воспользоваться его VIN кодом;
  • предел рабочих температур должен охватывать все возможные значения нагрева, некоторые из них приведены в таблице ниже.

Таблица: температурные пределы датчиков термоэлектрического типа

ТипСоставДиапазон температур
Tмедь / константанот -250 °C до 400 °C
Jжелезо / константанот -180 °C до 750 °C
Eхромель / константанот -40 °C до 900 °C
Kхромель / алюмельот -180 °C до 1 200 °C
Sплатина-родий (10 %) / платинаот 0 °C до 1 700 °C
Rплатина-родий (13 %) / платинаот 0 °C до 1 700 °C
Bплатина-родий (30 %) / платина-родий (6 %)от 0 °C до 1 800 °C
Nнихросил / нисилот -270 °C до 1 280 °C
Gвольфрам / рений (26 %)от 0 °C до 2 600 °C
Cвольфрам-рений (5 %) / вольфрам-рений (26 %)от 20 °C до 2 300 °C
Dвольфрам-рений (3 %) / вольфрам-рений (25 %)от 0 °C до 2 600 °C

Использованная литература

  1. Виглеб Г  «Датчики», 1989
  2. Фрайден Дж «Современные датчики. Справочник» 2005
  3. Ананьева Н.Г., Ананьева М.С., Самойлов В.Н «Измерение температуры» 2015
  4. Дж. Вебстер «Справочник по измерениям, сенсорам и приборам» 2006

Датчики температуры. Виды и принцип действия.

Что такое датчик температуры?

Датчик температуры — устройство для контроля температуры жидкости, твёрдого объекта или расплавленного вещества, окружающего воздуха и другое.

Параметры выбора датчика температуры.

Основными критериями при выборе датчика температуры являются:

  • Диапазон рабочей температуры;
  • Возможность погружения датчика в объект измерения или среду;
  • Условия проведения замеров, наличие агрессивных воздействий, давления, влажности и другое;
  • Ресурс – время наработки датчика до калибровки или замены;
  • Величина выходного сигнала — существует несколько видов:

сенсор — термосопротивление или термопара подключаются к прибору, контроллеру или модулю, имеющему на своём борту аналоговый вход;

аналоговые выходные сигналы передают данные на расстояние до 800 метров.

Монтаж осуществляется в коммутационную головку нормирующего преобразователя в заданном диапазоне измеряемых температур;

технические показатели – погрешность и разрешение измерения, напряжение, время срабатывания;

тип корпуса.

Виды датчиков температуры и их характеристики.

1. Термопары состоят из:

1 — наконечник;

2 — переключатель;

3 — милливольтметр;

4 — электроды.

Два изолированных электрода 4 спаяны на конце. Свободные концы электродов включены в общую электрическую цепь с милливольтметром 3. Проволочки термопар (за исключением места спая) изолированы одна от другой и от наконечника 1. Термопары применяют на судах для измерения температуры выхлопных газов дизелей и котлов. Поэтому и необходим переключатель 2, к которому можно подключить несколько термопар (по количеству цилиндров двигателя). Погрешность измерения у термопар примерно 3 %. Она зависит от температуры окружающей среды.

Поэтому желательно искусственно удлинить проволочки, изготовленные из того же материала и поместить гальванометр там, где температура относительно постоянная.

2. Термометры расширения изменяют объем жидкостей и твёрдых тел при изменении температуры. Из термометров расширения наиболее широко применяют жидкостные стеклянные термометры. Подобный термометр заполняется жидкостью (ртуть, толуол, этиловый спирт и др.), которая с увеличением температуры расширяется и поднимается вверх по капилляру.

Температура, измеряемая жидкостным термометром, преобразуется в линейное перемещение жидкости. Шкала наносится прямо на поверхность капилляра или прикрепляется к нему снаружи. Технические жидкостные стеклянные термометры применяют для измерения температур от -30 до +600°С.

3. Манометрические термометры состоят из термобаллона 1, гибкого капилляра 2 и манометра 3. Устройства изменяют давления газа, пара или жидкости в замкнутом объёме при изменении температуры.

В зависимости от заполняющего вещества манометрические термометры подразделяют на газовые, парожидкостные и жидкостные. Область измерения температур манометрическими термометрами от — 60 До + 600 °С.

Термобаллон манометрического термометра помещают в измеряемую среду. При нагреве термобаллона внутри замкнутого объёма увеличивается давление, которое измеряется манометром. Шкала манометра градуируется в единицах температуры. Капилляр (обычно латунная трубка внутренним диаметром, составляющим доли миллиметра) позволяет удалить манометр от места установки термобаллона на расстояние до 40 м. Капилляр по всей длине защищен оболочкой из стальной ленты.

Манометрические термометры могут применяться во взрывоопасных помещениях. При необходимости передачи результатов измерений на расстояние более 40м манометрические термометры снабжают промежуточными преобразователями с унифицированными выходными пневматическими или электрическими сигналами.

Наиболее уязвимыми в конструкции манометрических термометров являются места присоединения капилляра к термобаллону и манометру. Поэтому монтировать и обслуживать такие приборы следует осторожно.

4. Термометры сопротивления представляют собой первичные преобразователи с удобным для дистанционной передачи сигналом — электрическим сопротивлением. Для измерения такого сигнала обычно применяют автоматические уравновешенные мосты. При необходимости выходной сигнал термометра сопротивления может быть преобразован в унифицированный. Действие термометров сопротивления основано на свойстве тел изменять электрическое сопротивление при изменении температуры. У металлических термометров сопротивление с возрастанием температуры увеличивается линейно, у полупроводниковых – уменьшается.

Металлические термометры сопротивления изготавливают из тонкой медной или платиновой проволоки 1, помещённой в электроизоляционный корпус 2. Зависимость электрического сопротивления от температуры (для медных термометров от -50 до +180°С, для платиновых — от -200 до +750 °С ) весьма стабильна и воспроизводима. Благодаря этому термометры взаимозаменяемы.

5. жидкостный. Состоит из:

1 — металлический термопатрон;

2 — капилляр;

3 — сильфонная камера.

Металлический термопатрон 1 и сильфонная камера 3 связана между собой металлическим гибким капилляром 2. Внутренняя полость их герметична и в зависимости от диапазона измеряемых температур полностью заполняется глицерином, ксилолом или ртутью. Термопатрон помещают в зону контролируемой среды. При увеличении температуры среды увеличивается объём наполнителя, и он перетекает по капилляру в камеру сильфона, что вызывает перемещение торца последнего. Выходным сигналом датчика является перемещение штока 5, движимого торцом сильфона. Перемещение пропорционально изменению температуры. При понижении температуры объём наполнителя уменьшается, и торец сильфона движется в обратном направлении под действием возвратной пружины 4. Эти датчики обладают большими перестановочными усилиями. Однако они подвержены влиянию температуры окружающей среды, которое оказывается тем больше, чем меньше разность температур окружающей и контролируемой сред.

6. Датчик с твёрдым наполнителем термометрической системы (объёмный) имеет аналогичный с жидкостным датчиком принцип действия и свойства. Выполнен датчик в виде жёстко закреплённого сильфона 1, внутренняя полость которого герметична и заполнена аморфным телом (обычно пчелиным воском). При изменении температуры среды, омывающей сильфон, объём наполнителя увеличивается, вызывая перемещение торца сильфона. Для уменьшения тепловой инерционности датчика воск перемешивают с медными опилками.

7. Дилатометрический датчик состоит из

О — опора;

В — свободный конец;

1 — пружина;

2 — поворотный рычаг;

3 — теплообменник;

4 — трубки;

5 — стержень.

Нижний конец трубки 4 спаян со стержнем 5, свободно проходящим через трубку. Верхний конец 5 трубки впаян в резьбовой штуцер, на фланце которого закреплён поворотный рычаг 2, прижимаемый к стержню пружиной 1. Датчик устанавливают на трубопроводе или теплообменнике 3, а трубку 4 погружают в контролируемую среду.

Для трубки выбирают материал с высокой теплопроводностью и значительно большим коэффициентом линейного расширения, чем у материала стержня. Трубки изготавливают из меди, латуни, стали, а стержни – из инвара (сплав кобальта, железа и хрома), имеющего коэффициент линейного расширения, в 5 раз меньший, чем у меди, и в 2 раза меньший, чем у стали.

Изменение температуры среды, омывающей трубку, приводит к перемещению верхнего конца стержня. Перемещение стержня 5 приводит к развороту рычага 2 относительно опоры 0 и пропорциональному перемещению его свободного конца В на расстояние, являющееся выходным сигналом датчика. Дилатометры обладают большим перестановочным усилием. Однако значение их выходного сигнала мало, а тепловая инерция значительна. Недостатком также является невысокая точность измерения.

8. Биметаллический имеет аналогичный принцип действия, что и дилатометр. Чувствительный элемент состоит из плоской или спиральной пружины 1, спаянной из двух пластин разнородных металлов. При изменении температуры обе пластины удлиняются неодинаково, вызывая изгиб или скручивание спиральной пружины. Один конец пружины закреплён неподвижно, а перемещение свободного конца является выходным сигналом датчика.

9. Термоманометрические датчики по конструкции схожи с жидкостными. По роду наполнителя термоманометрические датчики разделяют на:

  • Парожидкостный. В подобном датчике термопатрон заполняют примерно на 2/3 объёма жидкостью с температурой кипения ниже измеряемой, а остальной объём занимают её пары. От диапазона измеряемых температур зависит вид жидкости: хлорметил (от – 20 °С до + 100 °С), хлорэтил (от 0 до + 125 °С), этиловый эфир (от 0 до + 150 °С), ацетон (от 0 до 170 °С), бензол (от 0 до + 200 °С). Давление паров по капиллярной трубке с внутренним диаметром около 0,3 мм дистанционно передаётся к датчику давления. Переносчиком давления является спирт или смесь глицерина с водой, которыми заполняют внутреннюю полость капилляра и датчик давления.
    На работы парожидкостных датчиков не влияет изменение температуры окружающей среды.
  • Газовый датчик, полностью заполненный азотом или гелием, служит для измерения в широком диапазоне температур (от – 130 до + 550 °С) и имеет линейную статическую характеристику. Однако датчик подвержен влиянию внешних температурных условий. Общими недостатками датчиков с жидкими, твёрдыми и газовыми наполнителями являются их большая тепловая инерционность, трудность (часто невозможность в судовых условиях) ремонта при нарушении герметичности измерительной системы и ограниченность расстояния передачи выходного сигнала. Наиболее распространены измерительные устройства с терморезисторами и термоэлектрическими датчиками температур.

10. терморезисторы работают по принципу изменения активного сопротивления проводников и полупроводников при изменении их температуры. Диапазон температур, измеряемых терморезистором, лежит в пределах от – 50 до + 600 С. Монтируют датчик в защитном герметичном корпусе для предохранения от механических повреждений и агрессивного воздействия среды.

Терморезистор представляет собой проволоку, намотанную на изоляционный каркас. В зависимости от диапазона измеряемой температуры применяют платиновую, медную или никелевую проволоку. Полупроводниковый терморезистор представляет собой смесь из порошкообразных окислов, спрессованную при высокой температуре. Они недостаточно стабильны, что ограничивает их применение. На корпусах датчиков, серийно выпускаемых, указывают условные обозначения терморезисторов: платиновый – ТСП, медный — ТСМ, полупроводниковый — ММТ, КМТ, МКМТ и т. д

11. Термометр электроконтактный. Состоит из:

1 — нижняя часть термометра;

2 — металлические контакты, впаянные в капилляр;

3 — зажимы, соединённые с контактами.

Широкое распространение среди жидкостных ртутных термометров получили электроконтактные термометры, которые применяются для целей сигнализации и простейшего регулирования тепловыми объектами. При этом столбик ртути представляет собой замыкающий контакт. Данные термометры выпускаются с постоянно впаянными несколькими контактами (тип термометра ТЭК) или с одним, но переменным контактом, который переустанавливается внутри капилляра при помощи специальной магнитной муфты (тип ТПК). Электроконтактные термометры применяются для цепей постоянного и переменного тока. Настройка температуры контактирования осуществляется по контрольному термометру. Данные термометры могут изготавливаться прямыми и угловыми, а также иметь защитную оправку

12. комбинированный датчик температуры и влажности обеспечивает точность измерения температуры ±2 градуса и влажности ±5 градусов. Интерфейс некоторых моделей комбинированных датчиков оптимизирован для подключения параллельных устройств.

13. цифровой датчик являются на текущий момент самым оптимальным решением для работы с микроконтроллерами, если нет каких-то специфических условий. В отличии от аналоговых, цифровые могут работать в длинной проводной линии. Их сигнал более устойчив к помехам.

Рабочий интерфейс подключает одновременно несколько цифровых датчиков на линию, осуществляя покрытие большой территории датчиками, и считывая градиент изменения температур на площади. Цифровые измерители способны работать даже с самыми примитивными интерфейсами.

Подобный датчик, работающий в параллели со множеством других датчиков, обеспечивает точность измерений до 0,5 градусов. Температурный интервал составляет от -55 до +125°С. Вычисления с максимальной точностью занимают у датчика 750 мс. Это делает его не очень быстродейственным.

14. бесконтактный оборудован тонкой плёнкой, поглощающей инфракрасное излучение, при этом нагреваясь. Подобные бесконтактные термосенсоры применяются в тепловизорах. Устройства данного типа позволяют детектировать тепловой объект на расстоянии до 3 метров.

15. кварцевые преобразователи — это автогенераторные преобразователи с частотным выходом, использующие в качестве чувствительного элемента пьезоэлектрический резонатор с сильной зависимостью частоты от температуры. Преимущество использования термочувствительных кварцевых резонаторов заключается в их высокой чувствительности, высокой стабильности и простоте использования. Сигнал от резонаторов можно сразу обрабатывать в цифровой форме. Это удешевляет процесс контроля температуры.

Измерение температуры с помощью термочувствительных кварцевых резонаторов основано на использовании анизотропии кристалла кварца. Выбирая соответствующую ориентацию среза пьезоэлемента относительно кристаллографических осей, можно изменять его термочастотную характеристику (ТЧХ), которая является нелинейной функцией температуры.

16. шумовые. В основе работы шумовых датчиков температуры лежит зависимость шумовой разности потенциалов на резисторе от температуры. Для измерения температуры шумовыми датчиками, необходимо сравнить шумы двух одинаковых резисторов. Один из них находится в среде с известной температурой, второй – в среде, температуру которой нужно измерить. Диапазон температур, которые измеряются с помощью шумовых датчиков, составляет от -270 до +1100°С. Основное преимущество шумовых датчиков – возможность измерения температуры в термодинамике — осложняется крайне малым напряжением шума, сравнимым с уровнем собственных шумов усилителя. Из-за этого напряжение шума крайне сложно измерить.

17. датчики температуры ЯКР (ядерного квадрупольного резонанса). Функционирование подобных термометров происходит за счёт действия градиента поля тока решётки кристалла и момента ядра, который вызван отклонением заряда от симметрии сферы. Это создаёт процессию ядер. Частота зависит от градиента поля решётки и для разных веществ может достигать тысячи мегагерц. Градиент зависит от температуры, с возрастанием которой, частота ЯКР уменьшается. Конструктивно датчики температуры ЯКР представляют собой ампулу с веществом, помещённую в обмотку индуктивности, соединённую с контуром генератора. При замере температуры -263°С, допуск составляет ±0,02 градуса, а при 27°С – ±0,002 градуса. Несмотря на значительную нелинейность преобразующей функции, термометры ЯКР обладают неограниченной по времени стабильностью.

18. объёмные. Свойство веществ расширяться и сжиматься при изменении температуры нашло применение в объёмных датчиках. Интервал измеряемых температур зависит от стабильности свойств материалов. Обычно этот интервал составляет от -60 до +400°С при допуске от 10 до 5%. При работе с жидкостью, интервал датчика зависит от температуры закипания и замерзания. При этом, погрешность измерения составляет от 1 до 3% и зависит от температуры среды. Нижняя граница измерений при работе с газом определяется температурой перехода газа в жидкое состояние, верхняя граница – стойкостью баллона к воздействию температуры. Выделяют маятниковый, комнатный, наружный датчики.

19. канальный. К данному типу относятся все цифровые модели, использующие для передачи сигнала каналы. Канальность устройства зависит от количества задействованных «магистралей». У одной модели может быть один канал, у другой три. Делятся на:

  • пассивные — представляют собой терморезистивный элемент, сопротивление которого изменяется под действием температуры. Существуют элементы как с положительной температурной зависимостью (PTC), сопротивление которых увеличивается с ростом температуры, так и элементы с отрицательной температурной зависимостью (NTC), сопротивление которых уменьшается с ростом температуры.
  • активные используют терморезистивный элемент, но при этом имеют встроенный электронный преобразователь, который преобразует резистивный сигнал в сигнал 0-10В или 4…20мА, пропорциональный определённому температурному диапазону. Такие датчики требуют наличие питания 24В. Благодаря наличию в устройстве джамперов имеется возможность переключения между несколькими температурными диапазонами. Существуют также модификации активных датчиков с ЖК-дисплеем, для наглядного отображения измеряемой температуры.

20. полупроводниковые предназначены для измерения температуры от -55° до 150°С. В этот диапазон попадает огромное количество задач, как в бытовых, так и в промышленных приложениях. Благодаря широким характеристикам, простоте применения и низкой стоимости полупроводниковые датчики температуры оказываются очень привлекательными для применения в микропроцессорных устройствах измерения и автоматики.

Физический принцип работы полупроводникового термометра основан на зависимости от температуры падения напряжения на p-n переходе, смещённом в прямом направлении. Данная зависимость близка к линейной, что позволяет создавать датчики, не требующие сложных схем коррекции. В качестве чувствительных элементов на практике используются диоды, либо транзисторы, включенные по схеме диода. Для проведения измерений, необходимо протекание стабильного тока через чувствительный элемент. Выходным сигналом является падение напряжения на датчике.

Схемы, использующие одиночный p-n переход, отличаются низкой точностью и большим разбросом параметров, связанных с особенностями изготовления и работы полупроводниковых приборов. Промышленность выпускает множество типов специализированных датчиков, имеющих в своей основе вышеописанный принцип, но дополнительно оснащенных цепями, устраняющими негативные особенности и значительно расширяющими функционал приборов.

Полупроводниковые датчики подразделяют на следующие виды:

  • аналоговые. Простые аналоговые полупроводниковые датчики практически в чистом виде реализуют идею измерения температуры, с помощью определения падения напряжения на p-n переходе. Для устранения всех отрицательных явлений, связанных с работой такого перехода, используется специальная схема, содержащая в своем составе два чувствительных элемента (транзистора) с различными характеристиками. Выходной сигнал формируется как разность падений напряжения на каждом чувствительном элементе. При вычитании значительно сокращаются негативные моменты. Дальнейшее повышение точности измерения осуществляется калибровкой датчика с помощью внешних цепей.

Основной характеристикой датчика является точность измерений. Для полупроводниковых моделей она колеблется от ±1°С до ±3.5°С. Самые точные модели редко обеспечивают точность лучше чем ±0.5°С. При этом данный параметр сильно зависит от температуры. В суженном диапазоне от -25° до 100°С точность в полтора раза выше, чем в полном диапазоне измерений -40°С до +125°С. Большинство аналоговых датчиков температуры, иначе называемых интегральными датчиками, содержит три вывода и включается по схеме диода. Третий вывод обычно используется для целей калибровки. Выходной сигнал датчика представляет собой напряжение, пропорциональное температуре. Величина изменения напряжения различна и составляет 10мВ/градус. Для точного определения значения температуры необходимо знать падение напряжения при каком-либо ее фиксированном значении. Обычно в качестве такового используется значение начала диапазона измерений либо 0°С.

  • с цифровым выходом Технология изготовления полупроводниковых термометров позволяет размещать их на кристаллах интегральных микросхем. Температурные датчики встречаются в составе микропроцессоров и микроконтроллеров, служебных мониторов микропроцессорных систем, а также в других измерительных устройствах, например датчиках влажности. Возможен и противоположный вариант — добавления различных элементов к датчикам. Примером подобных изделий могут служить датчики температуры с цифровым выходом. В отличие от аналоговых вариантов, эти устройства содержат встроенный АЦП и формирователь сигналов какого-либо стандартного интерфейса. Наибольшую популярность получили интерфейсы SPI, I2C и 1-Wire. Использование термометров с цифровым выходом значительно упрощает схемотехнику измерительного устройства, при незначительном увеличении стоимости относительно аналоговых вариантов. Использование стандартных интерфейсов интегрирует датчики в различные системы управления или подключать несколько датчиков на одну шину. Программирование протокола обмена с большинством датчиков не представляется сложной задачей. Данные элементы более популярны в любительской практике и мелкосерийном производстве.

21. пирометрические датчики представляют собой бесконтактные температурные датчики. Действие их основано на зависимости температуры от количества теплового электромагнитного излучения, полученного от объекта измерения. Радиационные термометры очень широко используются в различных отраслях промышленности: металлургия, производстве стекла и керамики, полупроводников, пластика, бумаги и т. д.

Подобные датчики подразделяются на

  • Яркостные позволяют визуально определить температуру нагретого тела путём сравнения его цвета с цветом эталонной нити.
  • Радиационные. Оценивают температуру посредством пересчитанного показателя мощности теплового излучения. Если пирометр измеряет в широкой полосе спектрального излучения, то такой пирометр называют пирометром полного излучения.
  • Цветовые (другие названия: мультиспектральные, спектрального отношения) — позволяют оценивать температуру объекта, основываясь на результатах сравнения его теплового излучения в различных спектрах.
  • Низкотемпературные показывают температуры объектов, обладающих даже отрицательными значениями этого параметра.
  • Высокотемпературные оценивают лишь температуру сильно нагретых тел, когда определение «на глаз» не представляется возможным. Обычно имеют сильное смещение в пользу «верхнего» предела измерения.
  • Переносные удобны в условиях, когда необходима высокая точность измерений, в совокупности с хорошими подвижными свойствами. Например для оценки температуры труднодоступных участков трубопроводов. Обычно снабжены небольшим дисплеем, отображающим графическую или текстово-цифровую информацию.
  • Стационарные предназначены для точной оценки температуры объектов. Используются в крупной промышленности, для непрерывного контроля технологического процесса производства расплавов металлов и пластиков.

22. терморезистивные работают при пропускании через них электрического тока и применяются в мостовых схемах. Измеряемая температура преобразовывается в сопротивление со стабильной линейной зависимостью.

23. термобиметаллический датчик температуры. Существуют датчики с плоским термобиметаллом, со спиралью и с фигурным термобиметаллом (фото слева направо). Состоит из:

1 — корпус;

2 — термобиметалл;

3 — подвижный контакт;

4 — неподвижный контакт;

5 — нагревательная спираль.

Датчики изменяют формы биметаллической пластины при изменении температуры. Самое большое применение они получили как «аварийные» датчики перегрева двигателя, но и со стрелочными приборами они также применялись.

При работе термобиметаллического датчика со стрелочным прибором биметалическая пластина соединяется бегунком переменного резистора. При изменении температуры пластина изменяет свою конфигурацию и перемещает бегунок по резистору, увеличивая или снижая сопротивление.

Если датчик используется как «аварийный», то есть включает лампу при перегреве двигателя, то биметаллическая пластина замыкает или размыкает контакты.

24. оптический датчик состоит из трёх слоёв плёнок, нанесённых на концы оптоволокон­ного волновода со ступенчатым измене­нием показателя преломления с диамет­ром сердцевины 100 мкм, и диаметром покрытия 140 мкм. Первый слой формируется из кремния, второй из ди­оксида кремния. Пленка из FeCrAl на­носится в самом конце для защиты ни­жележащих слоёв для защиты от окисления. Подобные оптоволокна применяются при температурах до 350°С. При ис­пользовании волноводов с золотым по­крытием рабочий диапазон увеличива­ется до 650°С. В качестве источников из­лучения используют светоизлучающие диоды с длиной волны излуче­ния порядка 860нм. Анализ результи­рующего сигнала проводится при помо­щи спектрометра.

25. акустические состоят из трёх компонентов: ультразвуковых передатчика и приёмника, а также герметичной трубки, заполненной газом. Передатчик и приёмник представляют собой керамические пьезоэлектрические пластины, акустически несвязанные с трубкой. Благодаря данной конструкции звук распространяется преимущественно через газ внутри трубки. В качестве газа чаще всего используется сухой воздух. В случае, когда объём и масса внутренней среды поддерживаются постоянными, не требуется применения промежуточной трубки. Если без неё не обойтись, то её необходимо защищать от механических деформаций и потери герметичности при воздействии очень высоких температур. Подходящим материалом для трубки является инвар.

Подобные датчики температуры используют принцип модуляции (зависимости) частоты электронных генераторов, построенных на основе времязадающих элементов поверхностных акустических волн (ПАВ). Датчики являются прямыми преобразователями температуры в частоту.

26. пьезоэлектрические датчики температуры – это приборы для бесконтактного измерения температуры тел. Принцип действия подобного преобразователя производится с помощью кварцевого пьезорезонатора. При пьезоэлектрическом эффекте наблюдается зависимость частоты вибраций кварцевого кристалла от температуры. Именно на основе этого явления и реализуются пьезоэлектрические датчики температуры. Поскольку кварц является анизотропным материалом, резонансная частота пластины сильно зависит от угла среза кристалла (его кристаллографической ориентации).

В пьезоэлектрических датчиках температуры всегда очень сложно организовать хорошую тепловую связь кристалла с объектом измерения. Поэтому они обладают худшим быстродействием по сравнению с термисторами и термоэлектрическими детекторами.

О других датчиках читайте на сайте “Промышленная Автоматизация”.

Купить датчики температуры можно в интернет-магазине “Промышленная Автоматизация”.

Оставить заявку или получить обратную связь вы можете написав нам на [email protected] или позвонив по бесплатному номеру 8 800 550-72-52. Специалисты отдела продаж подберут оборудование, проконсультируют по возникшим вопросам и проконтролируют поставку.

4 Наиболее распространенные типы датчиков температуры

Для некоторых применений, таких как оборудование, используемое для создания жизненно важных лекарств, датчики температуры должны быть чувствительными и точными для критического контроля качества; однако некоторые приложения, такие как термометр в вашем автомобиле, не требуют таких точных или чувствительных датчиков. Четыре наиболее распространенных типа датчиков температуры, различающихся по чувствительности и точности от высокой до низкой:

  • Термисторы с отрицательным температурным коэффициентом (NTC)
  • Термометры сопротивления (RTD)
  • Термопары
  • Полупроводниковые датчики

Датчик температуры-термисторный зонд

 

Типы датчиков температуры

1. Термистор с отрицательным температурным коэффициентом (NTC)

Термистор или представляет собой термочувствительный резистор, который демонстрирует непрерывное, небольшое, инкрементальное изменение сопротивления, коррелированное к колебаниям температуры. Термистор NTC обеспечивает более высокое сопротивление при низких температурах. По мере повышения температуры сопротивление постепенно падает в соответствии с таблицей R-T. Небольшие изменения точно отражают из-за больших изменений сопротивления на ° C. Выход термистора NTC нелинейный из-за его экспоненциального характера; однако его можно линеаризовать в зависимости от его применения. Эффективный рабочий диапазон составляет от -50 до 250 ° C для термисторов в стеклянном корпусе или 150 ° C для стандартных термисторов.

2. Датчик температуры сопротивления (RTD)

Датчик температуры сопротивления или RTD изменяет сопротивление элемента RTD в зависимости от температуры. РДТ состоит из пленки или, для большей точности, проволоки, намотанной на керамический или стеклянный сердечник. Из платины получаются наиболее точные термометры сопротивления, в то время как из никеля и меди изготавливаются более дешевые термометры сопротивления; однако никель и медь не так стабильны или воспроизводимы, как платина. Platinum RTD обеспечивают высокоточный линейный выходной сигнал в диапазоне от -200 до 600 ° С, но значительно дороже меди или никеля.

3. Термопары 

Термопара состоит из двух проводов из разных металлов, электрически соединенных в двух точках. Различное напряжение, создаваемое между этими двумя разнородными металлами, отражает пропорциональные изменения температуры. Термопары являются нелинейными и требуют преобразования с помощью таблицы при использовании для контроля температуры и компенсации, что обычно выполняется с использованием таблицы поиска. Точность низкая, от 0,5°C до 5°C, но термопары работают в самом широком диапазоне температур, от -200°C до 1750°C.

4. Полупроводниковые датчики температуры

Полупроводниковые датчики температуры обычно встраиваются в интегральные схемы (ИС). В этих датчиках используются два одинаковых диода с чувствительными к температуре характеристиками напряжения и тока, которые используются для отслеживания изменений температуры. Они предлагают линейный отклик, но имеют самую низкую точность по сравнению с основными типами датчиков. Эти датчики температуры также имеют самый медленный отклик в самом узком диапазоне температур (-70 град.0019°С до 150°С).

Измерение температуры в повседневной жизни

Датчики температуры необходимы в повседневной жизни. Эти важные элементы технологии измеряют количество тепла, выделяемого объектом или системой. Приведенные измерения позволяют нам физически ощущать изменение температуры. Одной из важных функций датчиков температуры является предотвращение . Датчики температуры обнаруживают установленную верхнюю точку, что дает время для превентивных действий. Хороший пример можно увидеть в пожарных извещателях.

По данным Sensorsmag.com:

Измерение температуры является одним из наиболее чувствительных свойств или параметров для таких отраслей, как нефтехимическая, автомобильная, аэрокосмическая и оборонная, бытовая электроника и так далее. Эти датчики устанавливаются в устройства с целью точного и эффективного измерения температуры среды в заданном наборе требований.

Надежная схема измерения температуры, использующая термисторный датчик NTC, может быть экономичным способом разработки схемы без ущерба для чувствительности или точности.

Эта запись была размещена в Термистор и отмечена цепью обнаружения, обнаружением температуры, датчиком температуры. Добавьте постоянную ссылку в закладки.

Датчики температуры: типы, принципы работы и области применения

Все мы используем датчики температуры в повседневной жизни, будь то термометры, бытовые водонагреватели, микроволновые печи или холодильники. Обычно датчики температуры имеют широкий спектр применения, в том числе геотехнический мониторинг.

Датчики температуры предназначены для регулярной проверки бетонных конструкций, мостов, железнодорожных путей, почвы и т. д.

Здесь мы расскажем вам, что такое датчик температуры, как он работает, где используется и каковы его разновидности.

Что такое датчики температуры?

Датчик температуры представляет собой устройство, обычно термопару или резистивный датчик температуры, который обеспечивает измерение температуры в читаемой форме посредством электрического сигнала.

Термометр — это самая простая форма измерителя температуры, которая используется для измерения степени нагревания и охлаждения.

Измерители температуры используются в геотехнической области для контроля бетона, конструкций, грунта, воды, мостов и т. д. на предмет их структурных изменений, вызванных сезонными колебаниями.

Термопара (Т/Т) изготовлена ​​из двух разнородных металлов, которые генерируют электрическое напряжение, прямо пропорциональное изменению температуры. RTD (датчик температуры сопротивления) представляет собой переменный резистор, который изменяет свое электрическое сопротивление прямо пропорционально изменению температуры точным, воспроизводимым и почти линейным образом.

Что делают датчики температуры?

Датчик температуры — это устройство, предназначенное для измерения степени нагревания или охлаждения объекта. Работа измерителя температуры зависит от напряжения на диоде. Изменение температуры прямо пропорционально сопротивлению диода. Чем ниже температура, тем меньше сопротивление, и наоборот.

Сопротивление диода измеряется и преобразуется в удобочитаемые единицы измерения температуры (Фаренгейты, Цельсия, Цельсия и т. д.) и отображается в числовой форме над единицами измерения. В области геотехнического мониторинга эти датчики температуры используются для измерения внутренней температуры конструкций, таких как мосты, плотины, здания, электростанции и т. д.

Каковы функции датчика температуры?

Существует много типов датчиков температуры, но наиболее распространенный способ их классификации основан на способе подключения, который включает в себя контактные и бесконтактные датчики температуры.

Контактные датчики включают термопары и термисторы, поскольку они находятся в непосредственном контакте с измеряемым объектом. Принимая во внимание, что бесконтактные датчики температуры измеряют тепловое излучение, испускаемое источником тепла. Такие измерители температуры часто используются в опасных средах, таких как атомные электростанции или тепловые электростанции.

В геотехническом мониторинге датчики температуры измеряют теплоту гидратации в массивных бетонных конструкциях. Их также можно использовать для мониторинга миграции грунтовых вод или просачивания. Одной из наиболее распространенных областей, где они используются, является отверждение бетона, потому что он должен быть относительно теплым, чтобы правильно схватываться и отвердевать. Сезонные колебания вызывают расширение или сжатие структуры, тем самым изменяя ее общий объем.

Как работает датчик температуры?

Основным принципом работы датчиков температуры является напряжение на клеммах диода. Если напряжение увеличивается, температура также повышается, что сопровождается падением напряжения между выводами транзистора базы и эмиттера в диоде.

Кроме того, Encardio Rite имеет датчик температуры с вибрирующей проволокой, работающий по принципу изменения напряжения при изменении температуры.

Измеритель температуры с вибропроводом разработан по принципу, согласно которому разнородные металлы имеют разный коэффициент линейного расширения при изменении температуры.

Он в основном состоит из магнитной натянутой проволоки с высокой прочностью на растяжение, два конца которой прикреплены к любому разнородному металлу таким образом, что любое изменение температуры непосредственно влияет на натяжение проволоки и, таким образом, на ее собственную частоту вибрации .

Отличным металлом в случае измерителя температуры Encardio Rite является алюминий (алюминий имеет больший коэффициент теплового расширения, чем сталь). другие датчики с вибрирующей проволокой также могут использоваться для контроля температуры.

Изменение температуры воспринимается специально разработанным вибрационным проводным датчиком Encardio Rite и преобразуется в электрический сигнал, который передается в виде частоты на блок считывания.

Частота, которая пропорциональна температуре и, в свою очередь, натяжению σ в проводе, может быть определена следующим образом: :

σ = натяжение проволоки

g = ускорение свободного падения

ρ = плотность проволоки

l = длина проволоки

Какие существуют типы датчиков температуры?

Доступны датчики температуры различных типов, форм и размеров. Существует два основных типа датчиков температуры:

Датчики температуры контактного типа: Существует несколько измерителей температуры, которые измеряют степень нагревания или холода объекта при непосредственном контакте с ним. Такие датчики температуры относятся к категории контактных. Их можно использовать для обнаружения твердых тел, жидкостей или газов в широком диапазоне температур.

Датчики температуры бесконтактного типа: Эти типы измерителей температуры не находятся в прямом контакте с объектом, а измеряют степень нагревания или охлаждения посредством излучения, испускаемого источником тепла.

Контактные и бесконтактные датчики температуры подразделяются на:

Термостаты

Термостат представляет собой датчик температуры контактного типа, состоящий из биметаллической пластины, изготовленной из двух разнородных металлов, таких как алюминий, медь, никель , или вольфрам.

Разница в коэффициентах линейного расширения обоих металлов заставляет их производить механическое изгибающее движение при воздействии тепла.

Термисторы

Термисторы или термочувствительные резисторы меняют свой внешний вид при изменении температуры. Термисторы изготовлены из керамического материала, такого как оксиды никеля, марганца или кобальта, покрытые стеклом, что позволяет им легко деформироваться.

Большинство термисторов имеют отрицательный температурный коэффициент (NTC), что означает, что их сопротивление уменьшается с повышением температуры. Но есть несколько термисторов, которые имеют положительный температурный коэффициент (PTC), и их сопротивление увеличивается с повышением температуры.

Резистивные датчики температуры (RTD)

RTD представляют собой точные датчики температуры, изготовленные из проводящих металлов высокой чистоты, таких как платина, медь или никель, намотанных в катушку. Электрическое сопротивление RTD изменяется аналогично термистору.

Термопары

Одним из наиболее распространенных датчиков температуры являются термопары из-за их широкого диапазона рабочих температур, надежности, точности, простоты и чувствительности.

Термопара обычно состоит из двух спаев разнородных металлов, таких как медь и константан, сваренных или обжатых вместе. Один из этих спаев, известный как холодный спай, поддерживается при определенной температуре, а другой — измерительный спай, известный как горячий спай.

При воздействии температуры на переходе возникает падение напряжения.

Термистор с отрицательным температурным коэффициентом (NTC)

Термистор представляет собой чувствительный датчик температуры, который точно реагирует даже на незначительные изменения температуры. Он обеспечивает огромное сопротивление при очень низких температурах. Это означает, что как только температура начинает повышаться, сопротивление начинает быстро падать.

Из-за большого изменения сопротивления на градус Цельсия даже небольшое изменение температуры точно отображается термистором с отрицательным температурным коэффициентом (NTC). Из-за этого экспоненциального принципа работы требуется линеаризация. Обычно они работают в диапазоне от -50 до 250 °C.

Полупроводниковые датчики

Полупроводниковый датчик температуры работает с двойными интегральными схемами (ИС). Они содержат два одинаковых диода с чувствительными к температуре характеристиками напряжения и тока для эффективного измерения изменений температуры.

Однако они дают линейный выходной сигнал, но менее точны при температуре от 1 °C до 5 °C. Они также демонстрируют самый медленный отклик (от 5 до 60 с) в самом узком диапазоне температур (от -70 °C до 150 °C).

Датчик температуры с вибрационным проводом, модель ETT-10V

Измеритель температуры Encardio Rite Модель ETT-10V с вибропроводом используется для измерения внутренней температуры бетонных конструкций или воды. Он имеет разрешение лучше 0,1 ° C и работает аналогично датчику температуры термопары. Он также имеет диапазон высоких температур от -20 до 80°C.0214 Диапазон от -20° до 80°C Точность ± 0,5 % полной шкалы, стандарт; ± 0,1 % полной шкалы опционально Размеры (Φ x Д) 34 x 168 мм

Датчик термистора сопротивления модели ETT-10TH

Датчик температуры сопротивления Encardio Rite модели ETT-10TH маломассивный водонепроницаемый датчик температуры для измерения температуры от –20 до 80°C. Благодаря низкой тепловой массе он имеет быстрое время отклика.

Датчик температуры сопротивления модели ETT-10TH специально разработан для измерения температуры поверхности стали и измерения температуры поверхности бетонных конструкций. ETT-10TH может быть встроен в бетон для измерения объемной температуры внутри бетона и может работать даже в погруженном состоянии под водой.

Датчики температуры сопротивления ETT-10TH полностью взаимозаменяемы. Показания температуры не будут отличаться более чем на 1°C в указанном диапазоне рабочих температур. Это позволяет использовать один индикатор с любым датчиком ETT-10TH без повторной калибровки.

Вибрационный проводной индикатор EDI-51V модели Encardio Rite при использовании с ETT-10TH напрямую показывает температуру зонда в градусах Цельсия.

Как работает термисторный датчик сопротивления модели ETT-10TH?

Температурный датчик ETT-10TH состоит из термистора с кривой зависимости сопротивления от температуры, залитого эпоксидной смолой и заключенного в медную трубку для более быстрого теплового отклика и защиты от окружающей среды. Трубка сплющена на конце, чтобы ее можно было закрепить на любой достаточно плоской металлической или бетонной поверхности для измерения температуры поверхности.

Плоский наконечник зонда можно прикрепить к большинству поверхностей с помощью легкодоступных двухкомпонентных эпоксидных клеев. При желании зонд также можно прикрепить болтами к поверхности конструкции.

Температурный датчик оснащен четырехжильным кабелем, используемым в качестве стандарта во всех вибропроволочных тензодатчиках Encardio Rite. Провода белого и зеленого цветов используются для термистора, аналогичного другим датчикам Encardio Rite с вибрирующим проводом.

Пара красных и черных проводов не используется. Единая цветовая схема для разных датчиков облегчает безошибочное соединение с терминалом регистратора данных.

Характеристики модели ETT-10TH
90 215 от -20° до 80°C
Тип датчика Кривая R-T соответствует термистору NTC, эквивалентна YSI 44005
Диапазон
Точность 1°C
Материал корпуса Луженая медь
Кабель 4-жильный в оболочке из ПВХ

Модель ETT-10PT Термометр сопротивления

9000 3

Температурный датчик ETT-10PT RTD (датчик температуры сопротивления) состоит из керамического резистивного элемента (Pt. 100) с европейской калибровкой кривой DIN IEC 751 (ранее DIN 43760). Элемент сопротивления размещен в прочной трубке из нержавеющей стали с закрытым концом, которая защищает элемент от влаги.

Как работает датчик температуры RTD модели ETT-10PT?

Датчик температуры сопротивления работает по принципу, согласно которому сопротивление датчика зависит от измеренной температуры. Платиновый RTD имеет очень хорошую точность, линейность, стабильность и воспроизводимость.

Датчик температуры сопротивления модели ETT-10PT поставляется с трехжильным экранированным кабелем. Красный провод обеспечивает одно соединение, а два черных провода вместе обеспечивают другое. Таким образом достигается компенсация сопротивления выводов и изменения сопротивления выводов от температуры. Показания датчика температуры сопротивления можно легко считывать с помощью цифрового индикатора температуры RTD.

Технические характеристики термометра сопротивления модели ETT-10PT
Тип датчика Pt 100
Диапазон от -20° до 80°C
Точность ± (0,3 + 0,005*t)°C 9021 6
Калибровка DIN IEC 751
Кривая (европейская) 0,00385 Ом/Ом/oC
Размеры (Φ x Д) 8 x 135 мм
Кабель 3-жильный экранированный

Термопара Encardio Rite

Encardio Rite предлагает Термопара Т-образная (медь-константан) для измерения внутренней температуры в бетонных конструкциях. Он состоит из двух разнородных металлов, соединенных вместе на одном конце. Когда соединение двух металлов нагревается или охлаждается, возникает напряжение, которое можно соотнести с температурой.

Измерение термопарой состоит из провода термопары с двумя разнородными проводниками (медь-константан), соединенными на одном конце для образования горячего спая. Этот конец герметизируется от коррозии и размещается в требуемых местах измерения температуры.

Другой конец провода термопары соединяется с подходящим разъемом для термопары, образуя холодный спай. Показания термопары отображают прямое показание температуры в месте установки и автоматически компенсируют температуру холодного спая.

Технические характеристики термопары Encardio Rite
Тип провода Т-медь-константан
Изоляция провода Тефлон PFA С
Температура горячего спая До 260oC (макс.)
Тип разъема Миниатюрный Стеклонаполненный нейлон
Рабочая температура 9021 6 от -20° до 100°C
Температура холодного спая Окружающая среда

Где используется датчик температуры?

Применение датчика температуры включает:

  1. Датчики температуры используются для проверки проектных допущений, которые способствуют более безопасному и экономичному проектированию и строительству.
  2. Используются для измерения повышения температуры в процессе твердения бетона.
  3. Они могут измерять температуру горных пород вблизи резервуаров для хранения сжиженного газа и операций по замораживанию грунта.
  4. Датчики температуры также могут измерять температуру воды в резервуарах и скважинах.
  5. Его можно использовать для интерпретации связанных с температурой изменений напряжения и объема в плотинах.
  6. Их также можно использовать для изучения влияния температуры на другие установленные приборы.

Преимущества датчиков температуры Encardio Rite

  1. Датчик температуры Encardio Rite является точным, недорогим и чрезвычайно надежным.
  2. Они подходят как для поверхностного монтажа, так и для встроенных приложений.
  3. Низкая тепловая масса обеспечивает более быстрое время отклика.
  4. Вибрационный датчик температуры полностью взаимозаменяем; один индикатор может считывать все датчики.
  5. Корпус защищен от непогоды со степенью защиты IP-68.
  6. Они поставляются с легкодоступными индикаторами для прямого отображения температуры.
  7. Датчики температуры имеют превосходную линейность и гистерезис.
  8. Технология вибрирующей проволоки обеспечивает долговременную стабильность, быстрое и легкое считывание.
  9. Датчики герметичны с помощью электронно-лучевой сварки с вакуумом около 1/1000 Торр.
  10. Они подходят для дистанционного считывания, сканирования и регистрации данных.

Часто задаваемые вопросы

В чем разница между датчиком температуры и преобразователем температуры?

Датчик температуры — это прибор, используемый для измерения степени нагревания или холода объекта, тогда как преобразователь температуры — это устройство, сопряженное с датчиком температуры для передачи сигналов на удаленное место в целях контроля и управления.

Это означает, что термопара, RTD или термистор подключены к регистратору данных для получения данных в любом удаленном месте.

Как измеряется температура в бетонной плотине?

За исключением процедуры, принятой во время строительства, наибольший фактор, вызывающий напряжение в массивном бетоне, связан с изменением температуры. Поэтому для анализа развития термических напряжений и контроля искусственного охлаждения необходимо отслеживать изменение температуры бетона во время строительства.

Для этого необходимо точно измерить температуру во многих точках конструкции, в воде и в воздухе. Необходимо встроить достаточное количество датчиков, чтобы получить правильную картину распределения температуры в различных точках конструкции.

Типичная схема большой бетонной плотины заключается в размещении датчиков температуры через каждые 15–20 м по поперечному сечению и через каждые 10 м по высоте. Для небольших плотин расстояние может быть уменьшено. Температурный датчик, помещенный в верхней части плотины, оценивает температуру резервуара, поскольку она меняется в течение года.

Это намного проще, чем время от времени бросать термометр в резервуар для наблюдения. При эксплуатации бетонной плотины суточные и сезонные изменения окружающей среды оказывают разрушительное воздействие на развитие термических напряжений в конструкции. Эффект более заметен на нижней стороне. Рядом с бетонной плотиной и в нижней ее части следует разместить несколько датчиков температуры для оценки быстрых ежедневных и еженедельных колебаний температуры.

Какой датчик температуры самый точный?

Термометр сопротивления — самый точный датчик температуры. Платиновый RTD имеет очень хорошую точность, линейность, стабильность и воспроизводимость по сравнению с термопарами или термисторами.

Что такое термопара?

Термопара — это тип датчика температуры, который используется для измерения внутренней температуры объекта.

Для термопар действуют три закона, как указано ниже:

Закон однородности материала

Если все провода и термопара изготовлены из одного и того же материала, изменения температуры в проводке не влияют на выходное напряжение. Следовательно, необходимы провода, изготовленные из различных материалов.

Закон промежуточных материалов

Сумма всех термоэлектрических сил в цепи с рядом разнородных материалов при одинаковой температуре равна нулю. Это означает, что если добавить третий материал при той же температуре, новый материал не будет генерировать результирующее напряжение.

Закон последовательных или промежуточных температур

Если два разнородных однородных материала создают термо-ЭДС1, когда их соединения находятся в точках Т1 и Т2, и создают термо-ЭДС2, когда точки соединения находятся в точках Т2 и Т3, то ЭДС генерируется, когда точки соединения находятся в точках Т1 и T3 будет emf1 + emf2

Как проверить датчик температуры?

В Encardio Rite у нас есть специализированные камеры для температурных испытаний (с уже известной температурой и системами контроля температуры) для проверки точности и качества наших датчиков температуры.

Leave a Comment

Ваш адрес email не будет опубликован. Обязательные поля помечены *