Схемы зарядных устройств для автомобильных аккумуляторов: Схемы зарядных устройств для автомобильных АКБ: как сделать своими руками

Содержание

схемы на самодельное зарядное устройство для АКБ

Разбор больше 11 схем для изготовления ЗУ своими руками в домашних условиях, новые схемы 2017 и 2018 года, как собрать принципиальную схему за час.

ТЕСТ:

Чтобы понять, обладаете ли вы необходимой информацией об аккумуляторах и зарядных устройствах для них, следует пройти небольшой тест:

  1. По каким основным причинам происходит разрядка автомобильного аккумулятора на дороге?

А) Автомобилист вышел из транспорта и забыл выключить фары.

Б) Аккумуляторная батарея слишком нагрелась под воздействием солнечных лучей.

  1. Может ли аккумулятор выйти из строя, если автомобилем не пользуются долгое время (стоит в гараже без запуска)?

А) При долгом простое аккумуляторная батарея выйдет из строя.

Б) Нет, батарея не испортится, ее потребуется только зарядить и она снова будет функционировать.

  1. Какой источник тока используется для подзарядки АКБ?

А) Есть только один вариант — сеть с напряжением в 220 вольт.

Б) Сеть на 180 Вольт.

  1. Обязательно снимать аккумуляторную батарею при подключении самодельного устройства?

А) Желательно производить демонтаж батареи с установленного места, иначе возникнет риск повредить электронику поступлением большого напряжения.

Б) Необязательно снимать АКБ с установленного места.

  1. Если перепутать «минус» и «плюс» при подключении ЗУ, то аккумуляторная батарея выйдет из строя?

А) Да, при неправильном подключении, аппаратура сгорит.

Б) Зарядное устройство просто не включится, потребуется переместить на положенные места необходимые контакты.

Ответы:

  1. А) Не выключенные фары при остановке и минусовая температура – наиболее распространенные причины разряда АКБ на дороге.
  2. А) АКБ выходит из строя, если долго не подзаряжать ее при простое автомобиля.
  3. А) Для подзарядки применяется напряжение сети в 220 В.
  4. А) Не желательно производить зарядку батареи самодельным устройством, если она не снята с автомобиля.
  5. А) Не следует путать клеммы, иначе самодельный аппарат перегорит.

Аккумулятор на автотранспорте требуют периодической зарядки. Причины разряжения могут быть разные — начиная от фар, что хозяин забыл выключить, и до отрицательных температур в зимний период на улице. Для подпитки АКБ потребуется хорошее зарядное устройство. Такое приспособление в больших разновидностях представлено в магазинах автозапчастей. Но если нет возможности или желания покупки, то ЗУ можно сделать своими руками в домашних условиях. Имеется также большое количество схем — их желательно все изучить, чтобы выбрать наиболее подходящий вариант.

Определение: Зарядное устройство для автомобиля предназначается для передачи электрического тока с заданным напряжением напрямую в АКБ.

Ответы на 5 часто задаваемых вопросов

  1. Потребуется ли производить какие-то дополнительные меры, перед тем как приступать к зарядке аккумуляторной батареи на своём автомобиле?
    – Да, потребуется почистить клеммы, поскольку во время работы на них появляются кислотные отложения. Контакты очень хорошо нужно почистить, чтобы ток без трудностей поступал к батарее. Иногда автомобилисты используют смазку для обработки клемм, ее тоже следует убрать.
  2. Чем протереть клеммы зарядных устройств? — Специализированное средство можно купить в магазине или приготовить самостоятельно. В качестве самостоятельно изготовленного раствора используют воду и соду. Компоненты смешиваются и перемешиваются. Это отличный вариант для обработки всех поверхностей. Когда кислота соприкоснется с содой, то произойдет реакция и автомобилист обязательно ее заметит. Это место и потребуется тщательно протереть, чтобы избавиться от всей кислоты.
    Если клеммы ранее обрабатывались смазкой, то она убирается любой чистой тряпкой.
  3. Если на аккумуляторе стоят крышки, то их нужно вскрывать перед началом зарядки? — Если крышки имеются на корпусе, то их обязательно снимают.
  4. По какой причине необходимо откручивать крышечки с аккумуляторной батареи? — Это нужно, чтобы газы, образующиеся в процессе зарядки, беспрепятственно выходили из корпуса.
  5. Есть необходимость обращать внимание на уровень электролита в аккумуляторной батарее? – Это делается в обязательном порядке. Если уровень ниже требуемого, то необходимо добавить дистиллированную воду внутрь аккумулятора. Уровень определить не составит труда – пластины должны быть полностью покрыты жидкостью.

Ещё важно знать: 3 нюанса об эксплуатации

Самоделка по способу эксплуатации несколько отличается от заводского варианта. Это объясняется тем, что у покупного агрегата имеются встроенные функции,

помогающие в работе. Их сложно установить на аппарате, собранном дома, а потому придется придерживаться нескольких правил при эксплуатации.

  1. Зарядное устройство, собранное своими руками не будет отключаться при полной зарядке аккумулятора. Именно поэтому необходимо периодически следить за оборудованием и подключать к нему мультиметр – для контроля заряда.
  2. Нужно быть очень аккуратным, не путать «плюс» и «минус», иначе зарядное устройство сгорит.
  3. Оборудование должна быть выключено, когда происходит соединение с зарядным устройством.

Выполняя эти простые правила, получится правильно произвести подпитку АКБ и не допустить неприятных последствий.

Топ-3 производителей зарядных устройств

Если нет желания или возможности своими руками собрать ЗУ, то обратите внимание на следующих производителей:

  1. Стек.
  2. Сонар.
  3. Hyundai.

Фирмы хорошо зарекомендовали себя на рынке, а потому о надежности и функциональности переживать при покупке не следует.

Как избежать 2-х ошибок при зарядке аккумуляторной батареи

Необходимо соблюдать основные правила, чтобы правильно подпитать батарею на автомобиле.

  1. Напрямую к электросети аккумуляторную батарею запрещено подключать. Для этой цели и предназначается зарядные устройства.
  2. Даже если устройство изготавливается качественно и из хороших материалов, всё равно потребуется периодически наблюдать за процессом зарядки, чтобы не произошли неприятности.

Выполнение простых правил обеспечит надежную работу самостоятельно сделанного оборудования. Гораздо проще следить за агрегатом, чем после тратиться на составляющие для ремонта.

Самое простое зарядное устройство для АКБ

Схема 100% рабочего ЗУ на 12 вольт


ЗУ на 12 вольт

Посмотрите на картинке на схему ЗУ на 12 В.  Оборудование предназначается для зарядки автомобильных аккумуляторов с напряжением 14,5 Вольт. Максимальный ток, получаемый при заряде составляет 6 А. Но аппарат также подходит и для других аккумуляторов – литий-ионных, поскольку напряжение и выходной ток можно отрегулировать. Все основные компоненты для сборки устройства можно найти на сайте Aliexpress.

Необходимые компоненты:

  1. dc-dc понижающий преобразователь.
  2. Амперметр.
  3. Диодный мост КВРС 5010.
  4. Концентраторы 2200 мкФ на 50 вольт.
  5. трансформатор ТС 180-2.
  6. Предохранители.
  7. Вилка для подключения к сети.
  8. «Крокодилы» для подключения клемм.
  9. Радиатор для диодного моста.

Трансформатор используется любой, по собственному усмотрению Главное, чтобы его мощность была не ниже 150 Вт (при зарядном токе в 6 А). Необходимо установить на оборудование толстые и короткие провода. Диодный мост фиксируется на большом радиаторе.

Схема ЗУ Рассвет 2

Схема ЗУ Рассвет 2

Посмотрите на картинке на схему зарядного устройства Рассвет 2. Она составлена по оригинальному ЗУ. Если освоить эту схему, то самостоятельно получится создать качественную копию, ничем не отличающуюся от оригинального образца. Конструктивно устройство представляет собой отдельный блок, закрывающийся корпусом, чтобы защитить электронику от влаги и воздействия плохих погодных условий. На основание корпуса необходимо подсоединить трансформатор и тиристоры на радиаторах. Потребуется плата, что будет стабилизировать заряд тока и управлять тиристорами и клеммы.

1 схема умного ЗУ

Умное ЗУ

Посмотрите на картинке принципиальную схему умного зарядного устройства. Приспособление необходимо для подключения к свинцово-кислотным аккумуляторам, имеющим емкость — 45 ампер в час или больше. Подключают такой вид аппарата не только к аккумуляторам, что ежедневно используются, но также к дежурным или находящимся в резерве. Это довольно бюджетная версия оборудования. В ней не предусмотрен индикатор, а микроконтроллер можно купить самый дешевый.

Если имеется необходимый опыт, то трансформатор собирается своими руками. Нет необходимости устанавливать также и звуковые сигналы оповещения — если аккумулятор подключится неправильно, то загоревшаяся лампочка разряда будет уведомлять об ошибке. На оборудование необходимо поставить импульсный блок питания  на 12 вольт — 10 ампер.

1 схема промышленного ЗУ


Посмотрите на схему промышленного зарядного устройства от оборудования Барс 8А. Трансформаторы используются с одной силовой обмоткой на 16 Вольт, добавляется несколько диодов vd-7 и vd-8. Это необходимо для того, чтобы обеспечить мостовую схему выпрямителя от одной обмотки.

1 схема инверторного устройства

Инверторный вид

Посмотрите на картинке схему инверторного зарядного устройства. Это приспособление перед началом зарядки разряжает аккумуляторную батарею до 10,5 Вольт. Ток используется с величиной С/20:  «C» обозначает ёмкость установленного аккумулятора. После этого процесса напряжение повышается до 14,5 Вольт, при помощи разрядно-зарядного цикла. Соотношение величины заряда и разряда составляет десять к одному.

1 электросхема ЗУ электроника

Схема Электроника

1 схема мощного ЗУ


Мощное ЗУ

Посмотрите на картинке на схему мощного зарядного устройства для автомобильного аккумулятора. Приспособление применяется для кислотных АКБ, имеющих высокую емкость. Устройство с легкостью заряжает автомобильный аккумулятор, имеющий емкость в 120 А. Выходное напряжение устройство регулируется самостоятельно. Оно составляет от 0 до 24 вольт. Схема примечательна тем, что в ней установлено мало компонентов, но дополнительные настройки при работе она не требует.

2 схемы советского ЗУ

Советское ЗУ

Многие уже могли видеть советское зарядное устройство. Оно похоже на небольшую коробку из металла, и может показаться совсем ненадежной. Но это вовсе не так. Главное отличие советского образца от современных моделей — надежность. Оборудование обладает конструктивной мощностью. В том случае, если к старому устройству подсоединить электронный контроллер, то зарядник получится оживить. Но если под рукой такого уже нет, но есть желание его собрать, необходимо изучить схему.

К особенностям их оборудования относят мощный трансформатор и выпрямитель, с помощью которых получается быстро зарядить даже сильно разряженную батарею. Многие современные аппараты не смогут повторить этот эффект.

Электрон 3М

Схема Электрон 3М

За час: 2 принципиальные схемы зарядки своими руками

Простые схемы

1 самая простая схема на автоматическое ЗУ для авто АКБ

Простая схема

Топ 4 схем импульсных ЗУ

Импульсные ЗУ

1 схема на тиристорное ЗУ

Схема

1 упрощенная схема с сайта Паяльник

Схема

1 схема на интеллектуальное ЗУ

Интеллектуальное ЗУ

4 подробные схемы защиты для ЗУ

Защита

Новые схемы 2017 и 2018 года

Новые схемы

1 схема на китайское ЗУ

Схема

1 простая схема — как собрать ЗУ

Схема

Самодельное зарядное устройство для аккумулятора автомобиля

На фотографии представлено самодельное автоматическое зарядное устройство для зарядки автомобильных аккумуляторов на 12 В током величиной до 8 А, собранного в корпусе от милливольтметра В3-38.

Почему нужно заряжать аккумулятор автомобиля


зарядным устройством

АКБ в автомобиле заряжается с помощью электрического генератора. Для защиты электрооборудования и приборов от повышенного напряжения, которое вырабатывает автомобильным генератором, после него устанавливают реле-регулятор, который ограничивает напряжение в бортовой сети автомобиля до 14,1±0,2 В. Для полной же зарядки аккумулятора требуется напряжение не менее 14,5 В.

Таким образом, полностью зарядить АКБ от генератора невозможно и перед наступлением холодов необходимо подзаряжать аккумулятор от зарядного устройства.

Анализ схем зарядных устройств

Для зарядки автомобильного аккумулятора служат зарядные устройства. Его можно купить готовое, но при желании и небольшом радиолюбительском опыте можно сделать своими руками, сэкономив при этом немалые деньги.

Схем зарядных устройств автомобильных аккумуляторов в Интернете опубликовано много, но все они имеют недостатки.

Зарядные устройства, сделанные на транзисторах, выделяют много тепла, как правило, боятся короткого замыкания и ошибочного подключения полярности аккумулятора. Схемы на тиристорах и симисторах не обеспечивают требуемой стабильность зарядного тока и издают акустический шум, не допускают ошибок подключения аккумулятора и излучают мощные радиопомехи, которые можно уменьшить, одев на сетевой провод ферритовое кольцо.

Привлекательной выглядит схема изготовления зарядного устройства из блока питания компьютера. Структурные схемы компьютерных блоков питания одинаковые, но электрические разные, и для доработки требуется высокая радиотехническая квалификация.

Интерес у меня вызвала конденсаторная схема зарядного устройства, КПД высокий, тепла не выделяет, обеспечивает стабильный ток заряда вне зависимости от степени заряда аккумулятора и колебаний питающей сети, не боится коротких замыканий выхода. Но тоже имеет недостаток. Если в процессе заряда пропадет контакт с аккумулятором, то напряжение на конденсаторах возрастает в несколько раз, (конденсаторы и трансформатор образуют резонансный колебательный контур с частотой электросети), и они пробиваются. Надо было устранить только этот единственный недостаток, что мне и удалось сделать.

В результате получилась схема зарядного устройства без выше перечисленных недостатков. Более 16 лет заряжаю ним любые кислотные аккумуляторы на 12 В. Устройство работает безотказно.

Принципиальная схема автомобильного зарядного устройства

При кажущейся сложности, схема самодельного зарядного устройства простая и состоит всего из нескольких законченных функциональных узлов.

Если схема для повторения Вам показалась сложной, то можно собрать более простую, работающую на таком же принципе, но без функции автоматического отключения при полной зарядке аккумулятора.

Схема ограничителя тока на балластных конденсаторах

В конденсаторном автомобильном зарядном устройстве регулировка величины и стабилизация силы тока заряда аккумулятора обеспечивается за счет включения последовательно с первичной обмоткой силового трансформатора Т1 балластных конденсаторов С4-С9. Чем больше емкость конденсатора, тем больше будет ток заряда аккумулятора.

Практически это законченный вариант зарядного устройства, можно подключить после диодного моста аккумулятор и зарядить его, но надежность такой схемы низкая. Если нарушится контакт с клеммами аккумулятора, то конденсаторы могут выйти из строя.

Емкость конденсаторов, которая зависит от величины тока и напряжения на вторичной обмотке трансформатора, можно приблизительно определить по формуле, но легче ориентироваться по данным таблицы.

Таблица емкости конденсаторов в зависимости от величины тока заряда аккумулятора
Ток заряда аккумулятора, А 0,51,02,03,04,05,06,07,08,09,0
Номинал конденсатора, мкF 1,03,48,012,016,020,024,028,032,036,0

Для регулировки тока, чтобы сократить количество конденсаторов, их можно подключать параллельно группами. У меня переключение осуществляется с помощью двух галетного переключателя, но можно поставить несколько тумблеров.

Схема защиты


от ошибочного подключения полюсов аккумулятора

Схема защиты от переполюсовки зарядного устройства при неправильном подключении аккумулятора к выводам выполнена на реле Р3. Если аккумулятор подключен неправильно, диод VD13 не пропускает ток, реле обесточено, контакты реле К3.1 разомкнуты и ток не поступает на клеммы аккумулятора. При правильном подключении реле срабатывает, контакты К3.1 замыкаются, и аккумулятор подключается к схеме зарядки. Такую схему защиты от переполюсовки можно использовать с любым зарядным устройством, как транзисторным, так и тиристорным. Ее достаточно включить в разрыв проводов, с помощью которых аккумулятор подключается к зарядному устройству.

Схема измерения тока и напряжения зарядки аккумулятора

Благодаря наличию переключателя S3 на схеме выше, при зарядке аккумулятора есть возможность контролировать не только величину тока зарядки, но и напряжение. При верхнем положении S3, измеряется ток, при нижнем – напряжение. Если зарядное устройство не подключено к электросети, то вольтметр покажет напряжение аккумулятора, а когда идет зарядка аккумулятора, то напряжение зарядки. В качестве головки применен микроамперметр М24 с электромагнитной системой. R17 шунтирует головку в режиме измерения тока, а R18 служит делителем при измерении напряжения.

Схема автоматического отключения ЗУ


при полной зарядке аккумулятора

Для питания операционного усилителя и создания опорного напряжения применена микросхема стабилизатора DA1 типа 142ЕН8Г на 9В. Микросхема это выбрана не случайно. При изменении температуры корпуса микросхемы на 10º, выходное напряжение изменяется не более чем на сотые доли вольта.

Система автоматического отключения зарядки при достижении напряжения 15,6 В выполнена на половинке микросхемы А1.1. Вывод 4 микросхемы подключен к делителю напряжения R7, R8 с которого на него подается опорное напряжение 4,5 В. Вывод 4 микросхемы подключен к другому делителю на резисторах R4-R6, резистор R5 подстроечный для установки порога срабатывания автомата. Величиной резистора R9 задается порог включения зарядного устройства 12,54 В. Благодаря применению диода VD7 и резистора R9, обеспечивается необходимый гистерезис между напряжением включения и отключения заряда аккумулятора.

Работает схема следующим образом. При подключении к зарядному устройству автомобильного аккумулятора, напряжение на клеммах которого меньше 16,5 В, на выводе 2 микросхемы А1.1 устанавливается напряжение достаточное для открывания транзистора VT1, транзистор открывается и реле P1 срабатывает, подключая контактами К1.1 к электросети через блок конденсаторов первичную обмотку трансформатора и начинается зарядка аккумулятора.

Как только напряжение заряда достигнет 16,5 В, напряжение на выходе А1.1 уменьшится до величины, недостаточной для поддержания транзистора VT1 в открытом состоянии. Реле отключится и контакты К1.1 подключат трансформатор через конденсатор дежурного режима С4, при котором ток заряда будет равен 0,5 А. В таком состоянии схема зарядного устройства будет находиться, пока напряжение на аккумуляторе не уменьшится до 12,54 В. Как только напряжение установится равным 12,54 В, опять включится реле и зарядка пойдет заданным током. Предусмотрена возможность, в случае необходимости, переключателем S2 отключить систему автоматического регулирования.

Таким образом, система автоматического слежения за зарядкой аккумулятора, исключит возможность перезаряда аккумулятора. Аккумулятор можно оставить подключенным к включенному зарядному устройству хоть на целый год. Такой режим актуален для автолюбителей, которые ездят только в летнее время. После окончания сезона автопробега можно подключить аккумулятор к зарядному устройству и выключить только весной. Даже если в электросети пропадет напряжение, при его появлении зарядное устройство продолжит заряжать аккумулятор в штатном режиме

Принцип работы схемы автоматического отключения зарядного устройства в случае превышения напряжения из-за отсутствия нагрузки, собранной на второй половинке операционного усилителя А1.2, такой же. Только порог полного отключения зарядного устройства от питающей сети выбран 19 В. Если напряжение зарядки менее 19 В, на выходе 8 микросхемы А1.2 напряжение достаточное, для удержания транзистора VT2 в открытом состоянии, при котором на реле P2 подано напряжение. Как только напряжение зарядки превысит 19 В, транзистор закроется, реле отпустит контакты К2.1 и подача напряжения на зарядное устройство полностью прекратится. Как только будет подключен аккумулятор, он запитает схему автоматики, и зарядное устройство сразу вернется в рабочее состояние.

Конструкция автоматического зарядного устройства

Все детали зарядного устройства размещены в корпусе миллиамперметра В3-38, из которого удалено все его содержимое, кроме стрелочного прибора. Монтаж элементов, кроме схемы автоматики, выполнен навесным способом.

Конструкция корпуса миллиамперметра, представляет собой две прямоугольные рамки, соединенные четырьмя уголками. В уголках с равным шагом сделаны отверстия, к которым удобно крепить детали.

Силовой трансформатор ТН61-220 закреплен на четырех винтах М4 на алюминиевой пластине толщиной 2 мм, пластина в свою очередь прикреплена винтами М3 к нижним уголкам корпуса. На этой пластине установлен и С1. На фото вид зарядного устройства снизу.

К верхним уголкам корпуса закреплена тоже пластина из стеклотекстолита толщиной 2 мм, а к ней винтами конденсаторы С4-С9 и реле Р1 и Р2. К этим уголкам также прикручена печатная плата, на которой спаяна схема автоматического управления зарядкой аккумулятора. Реально количество конденсаторов не шесть, как по схеме, а 14, так как для получения конденсатора нужного номинала приходилось соединять их параллельно. Конденсаторы и реле подключены к остальной схеме зарядного устройства через разъем (на фото выше голубой), что облегчило доступ к другим элементам при монтаже.

На внешней стороне задней стенки установлен ребристый алюминиевый радиатор для охлаждения силовых диодов VD2-VD5. Тут также установлен предохранитель Пр1 на 1 А и вилка, (взята от блока питания компьютера) для подачи питающего напряжения.

Силовые диоды зарядного устройства закреплены с помощью двух прижимных планок к радиатору внутри корпуса. Для этого в задней стенке корпуса сделано прямоугольное отверстие. Такое техническое решение позволило к минимуму свести количество выделяемого тепла внутри корпуса и экономии места. Выводы диодов и подводящие провода распаяны на незакрепленную планку из фольгированного стеклотекстолита.

На фотографии вид самодельного зарядного устройства с правой стороны. Монтаж электрической схемы выполнен цветными проводами, переменного напряжения – коричневым, плюсовые – красным, минусовые – проводами синего цвета. Сечение проводов, идущих от вторичной обмотки трансформатора к клеммам для подключения аккумулятора должно быть не менее 1 мм2.

Шунт амперметра представляет собой отрезок высокоомного провода константана длиной около сантиметра, концы которого запаяны в медные полоски. Длина провода шунта подбирается при калибровке амперметра. Провод я взял от шунта сгоревшего стрелочного тестера. Один конец из медных полосок припаян непосредственно к выходной клемме плюса, ко второй полоске припаян толстый проводник, идущий от контактов реле Р3. На стрелочный прибор от шунта идут желтый и красный провод.

Печатная плата блока автоматики зарядного устройства

Схема автоматического регулирования и защиты от неправильного подключения аккумулятора к зарядному устройству спаяна на печатной плате из фольгированного стеклотекстолита.

На фотографии представлен внешний вид собранной схемы. Рисунок печатной платы схемы автоматического регулирования и защиты простой, отверстия выполнены с шагом 2,5 мм.

На фотографии выше вид печатной платы со стороны установки деталей с нанесенной красным цветом маркировкой деталей. Такой чертеж удобен при сборке печатной платы.

Чертеж печатной платы выше пригодится при ее изготовлении с помощью технологии с применением лазерного принтера.

А этот чертеж печатной платы пригодится при нанесении токоведущих дорожек печатной платы ручным способом.

Шкала вольтметра и амперметра зарядного устройства

Шкала стрелочного прибора милливольтметра В3-38 не подходила под требуемые измерения, пришлось начертить на компьютере свой вариант, напечатал на плотной белой бумаге и клеем момент приклеил сверху на штатную шкалу.

Благодаря большему размеру шкалы и калибровки прибора в зоне измерения, точность отсчета напряжения получилась 0,2 В.

Провода для подключения АЗУ к клеммам аккумулятора и сети

На провода для подключения автомобильного аккумулятора к зарядному устройству с одной стороны установлены зажимы типа крокодил, с другой стороны разрезные наконечники. Для подключения плюсового вывода аккумулятора выбран красный провод, для подключения минусового – синий. Сечение проводов для подключения к устройству аккумулятора должно быть не менее 1 мм2.

К электрической сети зарядное устройство подключается с помощью универсального шнура с вилкой и розеткой, как применяется для подключения компьютеров, оргтехники и других электроприборов.

О деталях зарядного устройства

Силовой трансформатор Т1 применен типа ТН61-220, вторичные обмотки которого соединены последовательно, как показано на схеме. Так как КПД зарядного устройства не менее 0,8 и ток заряда обычно не превышает 6 А, то подойдет любой трансформатор мощностью 150 ватт. Вторичная обмотка трансформатора должна обеспечить напряжение 18-20 В при токе нагрузки до 8 А. Если нет готового трансформатора, то можно взять любой подходящий по мощности и перемотать вторичную обмотку. Рассчитать число витков вторичной обмотки трансформатора можно с помощью специального калькулятора.

Конденсаторы С4-С9 типа МБГЧ на напряжение не менее 350 В. Можно использовать конденсаторы любого типа, рассчитанные на работу в цепях переменного тока.

Диоды VD2-VD5 подойдут любого типа, рассчитанные на ток 10 А. VD7, VD11 — любые импульсные кремневые. VD6, VD8, VD10, VD5, VD12 и VD13 любые, выдерживающие ток 1 А. Светодиод VD1 – любой, VD9 я применил типа КИПД29. Отличительная особенность этого светодиода, что он меняет цвет свечения при смене полярности подключения. Для его переключения использованы контакты К1.2 реле Р1. Когда идет зарядка основным током светодиод светит желтым светом, а при переключении в режим подзарядки аккумулятора – зеленым. Вместо бинарного светодиода можно установить любых два одноцветных, подключив их по ниже приведенной схеме.

В качестве операционного усилителя выбран КР1005УД1, аналог зарубежного AN6551. Такие усилители применяли в блоке звука и видео в видеомагнитофоне ВМ-12. Усилитель хорош тем, что не требует двухполярного питания, цепей коррекции и сохраняет работоспособность при питающем напряжении от 5 до 12 В. Заменить его можно практически любым аналогичным. Хорошо подойдут для замены микросхемы, например, LM358, LM258, LM158, но нумерация выводов у них другая, и потребуется внести изменения в рисунок печатной платы.

Реле Р1 и Р2 любые на напряжение 9-12 В и контактами, рассчитанными на коммутируемый ток 1 А. Р3 на напряжение 9-12 В и ток коммутации 10 А, например РП-21-003. Если в реле несколько контактных групп, то их желательно запаять параллельно.

Переключатель S1 любого типа, рассчитанный на работу при напряжении 250 В и имеющий достаточное количество коммутирующих контактов. Если не нужен шаг регулирования тока в 1 А, то можно поставить несколько тумблеров и устанавливать ток заряда, допустим, 5 А и 8 А. Если заряжать только автомобильные аккумуляторы, то такое решение вполне оправдано. Переключатель S2 служит для отключения системы контроля уровня зарядки. В случае заряда аккумулятора большим током, возможно срабатывание системы раньше, чем аккумулятор зарядится полностью. В таком случае можно систему отключить и продолжить зарядку в ручном режиме.

Электромагнитная головка для измерителя тока и напряжения подойдет любая, с током полного отклонения 100 мкА, например типа М24. Если нет необходимости измерять напряжение, а только ток, то можно установить готовый амперметр, рассчитанный на максимальный постоянный ток измерения 10 А, а напряжение контролировать внешним стрелочным тестером или мультиметром, подключив их к контактам аккумулятора.

Настройка блока автоматической регулировки и защиты АЗУ

При безошибочной сборке платы и исправности всех радиоэлементов, схема заработает сразу. Останется только установить порог напряжения резистором R5, при достижении которого зарядка аккумулятора будет переведена в режим зарядки малым током.

Регулировку можно выполнить непосредственно при зарядке аккумулятора. Но все, же лучше подстраховаться и перед установкой в корпус, схему автоматического регулирования и защиты АЗУ проверить и настроить. Для этого понадобится блок питания постоянного тока, у которого есть возможность регулировать выходное напряжение в пределах от 10 до 20 В, рассчитанного на выходной ток величиной 0,5-1 А. Из измерительных приборов понадобится любой вольтметр, стрелочный тестер или мультиметр рассчитанный на измерение постоянного напряжения, с пределом измерения от 0 до 20 В.

Проверка стабилизатора напряжения

После монтажа всех деталей на печатную плату нужно подать от блока питания питающее напряжение величиной 12-15 В на общий провод (минус) и вывод 17 микросхемы DA1 (плюс). Изменяя напряжение на выходе блока питания от 12 до 20 В, нужно с помощью вольтметра убедиться, что величина напряжения на выходе 2 микросхемы стабилизатора напряжения DA1 равна 9 В. Если напряжение отличается или изменяется, то DA1 неисправна.

Микросхемы серии К142ЕН и аналоги имеют защиту от короткого замыкания по выходу и если закоротить ее выход на общий провод, то микросхема войдет в режим защиты и из строя не выйдет. Если проверка показала, что напряжение на выходе микросхемы равно 0, то это не всегда означает о ее неисправности. Вполне возможно наличие КЗ между дорожками печатной платы или неисправен один из радиоэлементов остальной части схемы. Для проверки микросхемы достаточно отсоединить от платы ее вывод 2 и если на нем появится 9 В, значит, микросхема исправна, и необходимо найти и устранить КЗ.

Проверка системы защиты от перенапряжения

Описание принципа работы схемы решил начать с более простой части схемы, к которой не предъявляются строгие нормы по напряжению срабатывания.

Функцию отключения АЗУ от электросети в случае отсоединения аккумулятора выполняет часть схемы, собранная на операционном дифференциальном усилителе А1.2 (далее ОУ).

Принцип работы операционного дифференциального усилителя

Без знания принципа работы ОУ разобраться в работе схемы сложно, поэтому приведу краткое описание. ОУ имеет два входа и один выход. Один из входов, который обозначается на схеме знаком «+», называется неинвертирующим, а второй вход, который обозначается знаком «–» или кружком, называется инвертирующим. Слово дифференциальный ОУ означает, что напряжение на выходе усилителя зависит от разности напряжений на его входах. В данной схеме операционный усилитель включен без обратной связи, в режиме компаратора – сравнения входных напряжений.

Таким образом, если напряжение на одном из входов будет неизменным, а на втором изменятся, то в момент перехода через точку равенства напряжений на входах, напряжение на выходе усилителя скачкообразно изменится.

Проверка схемы защиты от перенапряжения

Вернемся к схеме. Неинвертирующий вход усилителя А1.2 (вывод 6) подключен к делителю напряжения, собранного на резисторах R13 и R14. Этот делитель подключен к стабилизированному напряжению 9 В и поэтому напряжение в точке соединения резисторов, никогда не изменяется и составляет 6,75 В. Второй вход ОУ (вывод 7) подключен ко второму делителю напряжения, собранному на резисторах R11 и R12. Этот делитель напряжения подключен к шине, по которой идет зарядный ток, и напряжение на нем меняется в зависимости от величины тока и степени заряда аккумулятора. Поэтому и величина напряжения на выводе 7 тоже будет, соответственно изменятся. Сопротивления делителя подобраны таким образом, что при изменении напряжения зарядки аккумулятора от 9 до 19 В напряжение на выводе 7 будет меньше, чем на выводе 6 и напряжение на выходе ОУ (вывод 8) будет больше 0,8 В и близко к напряжению питания ОУ. Транзистор будет открыт, на обмотку реле Р2 будет поступать напряжение и оно замкнет контакты К2.1. Напряжение на выходе также закроет диод VD11 и резистор R15 в работе схемы участвовать не будет.

Как только напряжение зарядки превысит 19 В (это может случится только в случае, если от выхода АЗУ будет отключен аккумулятор), напряжение на выводе 7 станет больше, чем на выводе 6. В этом случае на выходе ОУ напряжение скачкообразно уменьшится до нуля. Транзистор закроется, реле обесточится и контакты К2.1 разомкнутся. Подача питающего напряжения на ОЗУ будет прекращена. В момент, когда напряжение на выходе ОУ станет равно нулю, откроется диод VD11 и, таким образом, параллельно к R14 делителя подключится R15. Напряжение на 6 выводе мгновенно уменьшится, что исключит ложные срабатывания в момент равенства напряжений на входах ОУ из-за пульсаций и помех. Изменяя величину R15 можно менять гистерезис компаратора, то есть напряжение, при котором схема вернется в исходное состояние.

При подключения аккумулятора к ОЗУ напряжения на выводе 6 опять установится равным 6,75 В, а на выводе 7 будет меньше и схема начнет работать в штатном режиме.

Для проверки работы схемы достаточно изменять напряжение на блоке питания от 12 до 20 В и подключив вольтметр вместо реле Р2 наблюдать его показания. При напряжении меньше 19 В, вольтметр должен показывать напряжение, величиной 17-18 В (часть напряжения упадет на транзисторе), а при большем – ноль. Желательно все же подключить к схеме обмотку реле, тогда будет проверена не только работа схемы, но и его работоспособность, а по щелчкам реле можно будет контролировать работу автоматики без вольтметра.

Если схема не работает, то нужно проверить напряжения на входах 6 и 7, выходе ОУ. При отличии напряжений от указанных выше, нужно проверить номиналы резисторов соответствующих делителей. Если резисторы делителей и диод VD11 исправны, то, следовательно, неисправен ОУ.

Для проверки цепи R15, D11 достаточно отключить одни из выводов этих элементов, схема будет работать, только без гистерезиса, то есть включаться и отключаться при одном и том же подаваемом с блока питания напряжении. Транзистор VT12 легко проверить, отсоединив один из выводов R16 и контролируя напряжение на выходе ОУ. Если на выходе ОУ напряжение изменяется правильно, а реле все время включено, значит, имеет место пробой между коллектором и эмиттером транзистора.

Проверка схемы отключения аккумулятора при полной его зарядке

Принцип работы ОУ А1. 1 ничем не отличается от работы А1.2, за исключением возможности изменять порог отключения напряжения с помощью подстроечного резистора R5.

Делитель для опорного напряжения собран на резисторах R7, R8 и напряжение на выводе 4 ОУ должно быть 4,5 В. Напряжение на выводе 3 А1.1, как Вы уже поняли, должно быть равно напряжению 4,5 в случае, когда напряжение на аккумуляторе достигнет величины 15,6 В для случая тока зарядки 0,3 А. Для больших токов, напряжение будет большим и его нужно подбирать экспериментально. Более подробно этот вопрос рассмотрен в статье сайта «Как заряжать аккумулятор».

Для проверки работы А1.1, питающее напряжение, поданное с блока питания плавно увеличивается и уменьшается в пределах 12-18 В. При достижении напряжения 15,6 В должно отключиться реле Р1 и контактами К1.1 переключить АЗУ в режим зарядки малым током через конденсатор С4. При снижении уровня напряжения ниже 12,54 В реле должно включится и переключить АЗУ в режим зарядки током заданной величины.

Напряжение порога включения 12,54 В можно регулировать изменением номинала резистора R9, но в этом нет необходимости.

С помощью переключателя S2 имеется возможность отключать автоматический режим работы, включив реле Р1 напрямую.

Схема зарядного устройства на конденсаторах


без автоматического отключения

Для тех, кто не имеет достаточного опыта по сборке электронных схем или не нуждается в автоматическом отключении ЗУ по окончании зарядки аккумулятора, предлагаю упрощенней вариант схемы устройства для зарядки кислотных автомобильных аккумуляторов. Отличительная особенность схемы в ее простоте для повторения, надежности, высоком КПД и стабильным током заряда, наличие защиты от неправильного подключения аккумулятора, автоматическое продолжение зарядки в случае пропадания питающего напряжения.

Принцип стабилизации зарядного тока остался неизменным и обеспечивается включением последовательно с сетевым трансформатором блока конденсаторов С1-С6. Для защиты от перенапряжения на входной обмотке и конденсаторах используется одна из пар нормально разомкнутых контактов реле Р1.

Когда аккумулятор не подключен, контакты реле Р1 К1.1 и К1.2 разомкнуты и даже если зарядное устройство подключено к питающей сети ток не поступает на схему. Тоже самое происходит, если подключить ошибочно аккумулятор по полярности. При правильном подключении аккумулятора ток с него поступает через диод VD8 на обмотку реле Р1, реле срабатывает и замыкаются его контакты К1.1 и К1.2. Через замкнутые контакты К1.1 сетевое напряжение поступает на зарядное устройство, а через К1.2 на аккумулятор поступает зарядный ток.

На первый взгляд кажется, что контакты реле К1.2 не нужны, но если их не будет, то при ошибочном подключении аккумулятора, ток потечет с плюсового вывода аккумулятора через минусовую клемму ЗУ, далее через диодный мост и далее непосредственно на минусовой вывод аккумулятора и диоды моста ЗУ выйдут из строя.

Предложенная простая схема для зарядки аккумуляторов легко адаптируется для зарядки аккумуляторов на напряжение 6 В или 24 В. Достаточно заменить реле Р1 на соответствующее напряжение. Для зарядки 24 вольтовых аккумуляторов необходимо обеспечить выходное напряжение с вторичной обмотки трансформатора Т1 не менее 36 В.

При желании схему простого зарядного устройства можно дополнить прибором индикации зарядного тока и напряжения, включив его как в схеме автоматического зарядного устройства.

Порядок зарядки автомобильного аккумулятора


автоматическим самодельным ЗУ

Перед зарядкой снятый с автомобиля аккумулятор необходимо очистить от грязи и протереть его поверхности, для удаления кислотных остатков, водным раствором соды. Если кислота на поверхности есть, то водный раствор соды пенится.

Если аккумулятор имеет пробки для заливки кислоты, то все пробки нужно выкрутить, для того, чтобы образующиеся при зарядке в аккумуляторе газы могли свободно выходить. Обязательно нужно проверить уровень электролита, и если он меньше требуемого, долить дистиллированной воды.

Далее нужно переключателем S1 на зарядном устройстве выставить величину тока заряда и подключить аккумулятор соблюдая полярность (плюсовой вывод аккумулятора нужно подсоединить к плюсовому выводу зарядного устройства) к его клеммам. Если переключатель S3 находится в нижнем положении, то стрелка прибора на зарядном устройстве сразу покажет напряжение, которое выдает аккумулятор. Осталось вставить вилку сетевого шнура в розетку и процесс зарядки аккумулятора начнется. Вольтметр уже начнет показывать напряжение зарядки.

Рассчитать время заряда аккумулятора с помощью онлайн калькулятора, выбрать оптимальный режим зарядки автомобильного аккумулятора и ознакомиться с правилами его эксплуатации Вы можете посетив статью сайта «Как заряжать аккумулятор».


Евгений 17.03.2016

Здравствуйте!
Хотелось бы узнать, работоспособны ли варианты схем на базе Вашей упрощенной схемы, представленные на рисунке. Хотелось бы обойтись тем, что имеется под рукой, минимумом деталей, ввиду срочности сборки. И какое реле можно применить?
Резистор параллельно конденсаторам приткнул — боюсь что при отключении они могут сохранять заряд и «кусаться» от вилки?
Заранее благодарен за ответ.

Александр

Здравствуйте, Евгений!
Верхняя схема на рисунке будет работать нормально. Реле можно брать любое на 12 В, и током нагрузки на контакты 10 А, хорошо подойдет реле, применяемые в автомобилях.
Резистор можно поставить, чтоб вилка не «кусалась».
Нижняя схема тоже будет работать, но ток зарядки будет гулять в больших пределах, и уменьшаться по мере зарядки аккумулятора. В этой схеме контакты К1.1 лишние. Провод от предохранителя проходит напрямую к латру.

Алекс 09.01.2017

Доброго времени суток Александр Николаевич.
От всей души поздравляю вас и вашу семью с наступившим Новым годом и Рождеством!
Случайно наткнулся на ваш сайт, когда искал схему зарядного устройства. Схема порадовала отсутствием электролитов (только в фильтре питания). Но у меня возникли вопросы …
Пока задам один, по регулятору тока в первичной обмотке. Вы применили МБГЧ и написали, что можно применять любые.

Можно ли использовать К73-15 или К73-17? Не взорвутся ли? ))) Либо их китайские аналоги CBB Металлизировало пленочные конденсаторы 4,7 µF 475j 630 V показанные на снимке?
Спасибо за ответ.

Александр

Здравствуйте, Алекс!
Вас тоже поздравляю с наступившим Новым годом и Рождеством!
Конденсатор С1 в фильтре можно и не ставить, он просто способствует более быстрому заряду аккумулятора при том же токе заряда, так как сглаживает пульсации.
Использовать К73-15 или К73-17 и любые другие можно, главное, чтобы они были рассчитаны на напряжение не менее 400 В. Китайские конденсаторы тоже подойдут.

Алексей 24.01.2018

Здравствуйте, Александр.
На фотографии ЗУ помещено в корпус блока питания, однако все надписи на лицевой панели соответствуют именно ЗУ. Значит Вы их делали сами. А каким образом это получилось?
Известный лазерно-утюжный способ что-то не очень эффективен. ..

Александр

Здравствуйте, Алексей!
Нарисовал в программе Визио картинку, напечатал на лазерном принтере на цветной плотной бумаге и поместил под оргстекло толщиной 1 мм и закрепил по углам четырьмя винтами.

Алексей 08.01.2021

Добрый день, подскажите, почему отключение настроено на 15,6 вольта, т.е 2,6 вольта на каждую банку. Это не многовато?

Александр

Здравствуйте, Алексей!
Напряжение на клеммах полностью заряженного аккумулятора через нескольких часов после окончания зарядки должно составлять 12,65 В. Но для того, чтобы при зарядке через аккумулятор пошел ток зарядки напряжение должно быть выше указанного, и чем больше нужен ток, тем больше должно быть напряжение зарядки. Это вытекает из Закона Ома: U=I×R.
Но внутреннее сопротивление аккумулятора зависит от его технического состояния, типа, температуры. Поэтому, если нужна высокая точность, напряжение отключения нужно подбирать под конкретный аккумулятор. Указанное напряжение 15,6 В подобрано экспериментально при зарядке нескольких аккумуляторов током 8 А. Многократная зарядка автомобильных аккумуляторов в течение более десяти лет, находившихся в разном техническом состоянии и степени заряда, подтвердила правильность выбора.
В случае величины тока зарядки меньше, напряжение отключения тоже должно быть меньше.

Сергей 31.03.2021

День добрый!
Имеется два трансформатора от одинаковых ИБП PCM SMK-600A (по 360 Вт) с напряжениями на вторичной обмотке по 12,6 В. Имеет право на жизнь ЗУ по такой схеме?

Александр

Здравствуйте, Сергей!
Да, схема будет нормально работать, но заряжать током до 2 А. Указанная в маркировке мощность ИБП относится к отдаваемой мощности в режиме источника бесперебойного питания. Расчеты показали, для зарядки штатного аккумулятора ИБП емкостью 14,2 А·Ч нужен ток около 2 А.

схема на тиристоре, с регулятором тока

Содержание

  1. Принцип работы и основные компоненты
  2. Принципиальные схемы зарядных устройств
  3. Простое зарядное устройство для АКБ автомобиля на 12В
  4. Зарядное на тиристоре ку202н
  5. ЗУ для автомобильного аккумулятора на tl494
  6. Схема с автоматическим отключением
  7. Схема мощного ЗУ с регулировкой тока
  8. Технология сборки
  9. Часто задаваемые вопросы

Зарядное устройство для автомобильного аккумулятора — необходимое устройство в любом автохозяйстве. Его можно купить в магазине. А можно сделать самостоятельно.

Принцип работы и основные компоненты

Свинцово-кислотные аккумуляторы заряжают постоянным (выпрямленным) напряжением, стабильным по уровню. Чтобы получить ток, втекающий в батарею, зарядное напряжение должно быть выше напряжения АКБ. Ток заряда в таком режиме зависит от разницы напряжений источника и батареи.

Полностью разряженная АКБ автомобиля выдает напряжение 10,5 вольт (ниже разряжать нельзя), полностью заряженная — 12,6 вольт. В процессе уровень на выходе ЗУ остается постоянным, на клеммах батареи плавно повышается. Поэтому в начале зарядки ток будет максимальным, по окончании – минимальным. Снижение уровня тока служит признаком окончания процесса. Также для автоматического завершения зарядки можно использовать достижение напряжения на АКБ значения 12,5..12,6 вольт.

Процесс зарядки свинцово-кислотной батареи стабильным напряжением.

Стандартная схема построения зарядника содержит:

  1. Сетевой трансформатор;
  2. Выпрямитель;
  3. Регулятор тока (напряжения) — стабилизированный или нет.
Общая схема построения зарядников для автомобильных АКБ.

Очень желательны приборы, индицирующие ток и напряжение. Дополнительно ЗУ может оснащаться:

  • схемой ограничения тока;
  • электрическими защитами;
  • индикацией или автоматическим отключением по окончании зарядки.

Эти функции являются сервисными и повышают удобство работы с ЗУ.

Принципиальные схемы зарядных устройств

Зарядное устройство для автомобильной батареи можно выполнить на разной элементной базе. Все зависит от наличия комплектующих и квалификации мастера.

Простое зарядное устройство для АКБ автомобиля на 12В

Для регулирования тока и напряжения можно применить обычный потенциометр. Вращением его движка можно подстраивать ток в зарядной цепи.

ЗУ с регулирующим потенциометром.

На практике такая схема не используется по двум причинам:

  • через потенциометр идет полный ток нагрузки, элемент такой мощности найти трудно;
  • ток нагрузки идет через подвижный контакт движка переменного резистора, это значительно снижает надежность работы устройства.

Зато по этой схеме легко понять принцип работы простых зарядников.

Схема простого ЗУ.

На практике реализуется другая схема зарядного устройства для сборки своими руками. Здесь потенциометр включен в цепь базы транзистора, и ток через него небольшой. Зарядный же ток идет через коллектор-эмиттер транзистора, а полупроводниковый элемент подобной мощности найти гораздо проще. Но в этом и состоит главный недостаток схемы. Сквозной ток идет через регулирующий элемент, вся излишняя мощность рассеивается на нем. Потребуется радиатор значительной площади.


Зарядное на тиристоре ку202н

Популярна схема самодельного зарядного устройства, где аккумулятор заряжается выпрямленным напряжением, а ток регулируется вручную посредством тиристора (подходит отечественный КУ202Н или зарубежные аналоги).

Схема зарядного устройства на тиристоре.

Сетевое напряжение понижается трансформатором Т1 и выпрямляется мостом VD1..VD4. На однопереходном транзисторе VT2 собран генератор импульсов. Его частота задается цепью из конденсатора C1 и управляемого резистора на VT1. Его сопротивление регулирует потенциометр R5. В начале каждого полупериода генератор запускается через цепь R1VD1, и начинает выдавать импульсы с заданной частотой. Первый импульс открывает тиристор, остальные (следующие до конца полупериода) не имеют значения. Чем раньше открывается ключ на VS1, тем большая часть синусоиды попадает в нагрузку, тем выше усредненное напряжение на аккумуляторе и средний ток, втекающий в него.

Принцип фазоимпульсного регулирования.

Амперметр служит для контроля этого тока. Недостаток схемы в том, что напряжение не стабилизировано, и будет изменяться вслед за изменением напряжения сети 220 вольт (оно может меняться в пределах ±5%). Вслед за напряжением будет меняться ток заряда, потому процесс требует периодического контроля и, при необходимости, подстройки. Кроме того, напряжение на АКБ не измерить обычным вольтметром или мультиметром – они рассчитаны на измерение постоянного напряжения, а зарядник выдает резко отличающуюся от постоянки форму. Погрешность будет очень высокой, поэтому для контроля придется отключать аккумулятор и замерять его напряжение.


Схема ЗУ без однопереходного транзистора.

Если однопереходного транзистора нет, схему можно собрать без него. Она немного усложнится. Но вместо регулируемого сопротивления на транзисторе для задания частоты генерации возможно применить обычный потенциометр.

Зарядное устройство на симисторе.

Существуют различные варианты данной схемы. Например, регулируемое устройство на симисторе. Здесь силовым ключом служит мощный симистор, а тиристор задействован в схеме формирования открывающих импульсов.

Видео версия: Зарядное с десульфатацией на одном тиристоре.

ЗУ для автомобильного аккумулятора на tl494

Зарядник можно построить на микросхеме TL494. Эта микросхема используется не совсем стандартно – обычно на ней строят полностью импульсные источники питания с выпрямлением сетевого напряжения и «нарезанием» из полученной постоянки высокочастотных импульсов (как в компьютерных БП). Здесь же присутствует и сетевой трансформатор, и выпрямитель вторичного напряжения. Импульсным является только регулируемый стабилизатор. Его достоинство в том, что регулирующий элемент (транзистор) открывается на определенные промежутки времени, через него не течет сквозной ток (равный току нагрузки), поэтому размеры теплоотвода можно значительно уменьшить.

Схема ЗУ на TL494.

Микросхема генерирует импульсы, частота которых задается цепью R4C3, а ширина зависит от разницы между уровнями на входах 1 и 2. Импульсы управляют транзистором VT1, который, открываясь, подпитывает энергией дроссель L1. Запасенная энергия расходуется в нагрузку. Чем больше нагрузка, тем быстрее расходуется запас, тем быстрее падает напряжение на выходе, что приводит к увеличению длительности импульсов с выхода 8 микросхемы. К этому же приводит вращение потенциометра R9 — так регулируется выходное напряжение.

Ток заряда регулируется разницей напряжений между АКБ и выходом ЗУ, но микросхема TL494 позволяет выполнить дополнительное ограничение тока. Для этого используется второй усилитель ошибки. Ток ограничителя устанавливается потенциометром R3, а фактический ток замеряется, как падение напряжения на шунте R11. Если ток выше заданного, длительность импульсов уменьшается, напряжение на выходе снижается до достижения необходимого тока. Такой режим полезен при зарядке сильно разряженных батарей, а также позволяет осуществить режим зарядки стабилизированным током. В совокупности с широким диапазоном регулировки напряжения, возможность ограничения тока делает ЗУ универсальным и позволяет заряжать аккумуляторы, сделанные по различным технологиям. Также ограничитель осуществляет защиту силовых элементов от сверхтока.

Номиналы деталей указаны на схеме. Дроссель лучше изготовить на сердечнике из альсифера.

При настройке подбирают число витков так, чтобы свист обмотки наблюдался только при среднем токе нагрузки, а при его увеличении исчезал. Если свист исчезает рано (уже при небольших токах) и выходной транзистор греется, количество витков надо увеличить. Ориентироваться надо на 20..100 витков провода диаметром 2 мм. Также при сборке в электросхему надо добавить вольтметр и амперметр (можно цифровой или стрелочный) – пользоваться будет намного удобнее. Напряжение на выходе сглаживается конденсатором C6, его форма близка к постоянному.

Рекомендуем: Как из БП компьютера сделать зарядное устройство

Схема с автоматическим отключением

Удобно, чтобы батарея отключалась по окончании процесса пополнения энергии. Один из вариантов схемы такой автоматики приведен на рисунке.

Схема автоматического отключения.

Принцип действия основан на контроле напряжения заряжаемой батареи. Как только оно достигнет номинального уровня (он подстраивается потенциометром), транзистор откроется, сработает реле и отключит напряжение с АКБ. При этом загорится светодиод, сигнализирующий об окончании зарядки. Реле можно применить любое с напряжением срабатывания 12 вольт и током контактов не менее 15 ADC.

Достоинство схемы в том, что ее можно собрать на отдельной плате и использовать совместно с любым готовым зарядником. Недостатком является необходимость измерять напряжение непосредственно на клемме аккумулятора, поэтому цепь измерения (выделена красной линией) надо выполнять отдельным проводом с зажимом и подключать непосредственно к плюсовому выводу АКБ.

От этого недостатка свободны схемы с контролем зарядного тока, отключающие ЗУ при снижении тока ниже установленного предела. Для измерения тока в заряднике должно быть установлено измерительное сопротивление (шунт).

Схема мощного ЗУ с регулировкой тока

Схема мощного зарядного устройства.

Заслуживает внимания еще одна схема ЗУ, обеспечивающая ток не менее 10 А. Ее особенности:

  • схема управления собрана по стороне 220 вольт;
  • первичная обмотка трансформатора служит одновременно индуктивностью, накапливающей энергию, а затем отдающей ее в нагрузку через вторичные обмотки.

Принцип регулирования – фазоимпульсный, ключом служит симистор VS1. Ток устанавливается потенциометром R1 и регулируется от нуля до 10 А. Первичная обмотка трансформатора должна иметь достаточную индуктивность. Для его изготовления можно применить ЛАТР-2. Его обмотка будет служить первичкой. Сверху надо обустроить изоляцию (достаточно 3 слоя лакоткани), а поверх намотать вторичную обмотку проводом сечением 3 кв.мм 40+40 витков. Резистор R6 служит нагрузкой выпрямителя и создает импульсы разряда батареи. Считается, что такой режим продлевает период эксплуатации АКБ. Вместо него можно установить автомобильную лампу накаливания на 12 вольт мощностью 10 ватт.

Читайте также

Схема и сборка самодельного блока питания с регулировкой напряжения и тока

 

Технология сборки

Большинство электронных компонентов лучше собрать на печатной плате. В домашних условиях плату можно изготовить методом ЛУТ или фотоспособом. Разработать рисунок можно в бесплатных программах, например LayOut или условно-бесплатной Eagle. А можно нарисовать дедовским способом на бумаге и нанести рисунок лаком на поверхность фольги. Плата травится в растворе хлорного железа или в следующем составе:

  1. 100 мл аптечной перекиси водорода.
  2. 30 г лимонной кислоты.
  3. Две чайные ложки поваренной соли.

Силовые элементы монтируются на радиаторы достаточной площади. Устанавливать их надо на теплопроводящую пасту. Если теплоотводящая поверхность элемента не соединена с общим выводом, на теплоотвод деталь крепят через изолирующую прокладку – слюдяную или из упругого материала. Радиатором может служить металлическая стенка корпуса. Также можно сделать теплоотвод частью конструкции. Можно организовать обдув радиаторов – тогда их площадь можно значительно уменьшить. Для этого понадобится вентилятор на 12 вольт, который можно подключить к выходу диодного моста.

Корпус подбирается готовым или изготавливается самостоятельно. На передней панели крепятся:

  • измерительные приборы;
  • органы регулирования напряжения и тока;
  • индикаторы включенного состояния.

Для подключения проводов, отходящих к аккумулятору, клеммы и разъемы лучше не использовать. Токи через них идут большие, поэтому потенциальный источник дополнительного переходного сопротивления нежелателен. Провода лучше подпаять к плате и вывести через отверстия в передней панели. Сечение проводников должно достаточным – не менее 2 кв.мм, а лучше 4 кв.мм. С другой стороны проводов надо припаять зажимы «крокодил».

Зарядное устройство в самодельном корпусе.

Это не полный обзор схем зарядок для автомобильного аккумулятора – их существует великое множество. По представленным конструкциям можно понять принципы построения ЗУ, требования к ним, разобраться в несложной схемотехнике. Отработав на практике сборку этих зарядных устройств, впоследствии можно перейти к более серьезным схемам, в том числе с использованием микроконтроллеров.

Похожая статья: Самодельное зарядное устройство для литий ионных аккумуляторов

Часто задаваемые вопросы

Каковы должны быть пределы регулировки по напряжению

Изменением уровня напряжения изменяют зарядный ток. Если предстоит зарядка автомобильных свинцово-кислотных батарей, то можно выбрать нижний предел регулировки, равный нижнему напряжению разряженной батареи – 10,5 вольт. Верхний предел надо установить по верхнему уровню 12,5 вольт плюс 1,5..2 вольта. На практике неплохо иметь запас по лимитам регулирования. Пределы от 10 до 16 вольт обеспечиат полный диапазон практически используемых зарядных токов.

Где можно взять трансформатор для автомобильного зарядного

Трансформатор можно подобрать промышленного изготовления. Ориентироваться надо на выходное напряжение и ток. Первый параметр должен составлять 12-14 (или 18..24 в зависимости от схемотехники) вольт, второй – от 4 до 10 ампер. Характеристики нескольких подходящих трансформаторов приведены в таблице.

Тип промышленного трансформатораВыходное напряжение, ВНаибольший ток, А
ТТП-100127,5
ТТП-1501212
ТН8-127/220-502х6,3 (обмотки соединяются последовательно)4,8
ТН28-127/220-502х6,3 (обмотки соединяются последовательно)4,8

Если есть трансформатор подходящей габаритной мощности, но вторичная обмотка не подходит по току или напряжению, ее можно смотать и намотать новую. Габаритная мощность определяется по сечению железа по формуле P=0,8..0,88*S2*/14000, где:

  1. P – габаритная мощность, ВА.
  2. 0,8..0,88 – коэффициент, учитывающий материал стали (если он неизвестен, выбирается значение 0,8).
  3. S — площадь сечения сердечника в квадратных сантиметрах.

Площадь сечения для тороидального сердечника вычисляется как (D-d)*h/2 (см.рис), для других типов – a*b.

Площадь сечения для разных типов сердечников

Для тока 4..10 А габаритная мощность должна быть не менее, соответственно, 50..120 ВА. Если железо подходит, вторичная обмотка перематывается медным проводом. Его сечение выбирается по упрощенной формуле d=0,72√I, где:

  • d – диаметр провода в мм;
  • I – потребный ток в амперах.

Число витков выбирается по формуле N=(50/S)*V (где V – требуемое выходное напряжение в вольтах) или подбирается экспериментально. Также для расчета можно воспользоваться различными программами-калькуляторами, в том числе размещенными на веб-сервисах.

Можно ли с помощью самодельных ЗУ заряжать АКБ без снятия с автомобиля

Этого делать не стоит. При зарядке на аккумулятор подается напряжение, уровнем и формой отличающееся от напряжения бортсети машины. Есть риск повреждения автомобильной электроники. Клеммы от АКБ надо отключить. Сам аккумулятор при этом можно не демонтировать, но это не очень удобно, да и длины проводов от ЗУ может не хватить.

Схема импульсного зарядного устройства для автомобильного аккумулятора

Автолюбителю

ГлавнаяРадиолюбителюАвтолюбителю

4 года назад


На данный момент существует много схем зарядных устройств, в том числе и импульсных, которые позволяют зарядить аккумулятор автомобиля. Часть таких устройств, к сожалению, обладают существенными недостатками, выраженными в значительных габаритах, дороговизне комплектующих, сложности самостоятельной сборки или недостаточной выходной мощности. Представленная ниже схема не обладает такими минусами, но к тому же еще имеет следующие преимущества:

  • заряд АКБ автомобиля необходимым током и напряжением;
  • разряд батареи, с возможностью регулировки тока до 120 от её емкости до напряжения на клеммах аккумулятора 10. 5 В;
  • попеременно заряжая и разряжая аккумулятор, данное зарядное устройство позволит провести заряд до 14,5 В с целью предотвращения сульфитации пластин батареи;
  • возможность восстановления аккумуляторов авто (и не только авто).

Все эти функции возможны в одном зарядном устройстве, которое вполне под силу собрать самостоятельно, тщательно подбирая компоненты и припаивая их на свои места. Схема импульсного зарядного устройства для автомобильного аккумулятора:

Рис. 1. Схема импульсного зарядного устройства для автомобильного аккумулятора

 

На первый взгляд схема может показаться сложной, но на самом деле она будет достаточно компактной, при своей функциональности. Элементная база ЗУ широко распространена, и на большинство деталей вполне можно найти аналоги, как импортные, так и отечественные. Все номиналы подписаны на схеме. 

 

Краткий принцип работы и особенности сборки

Регулировка выходного тока выставляется в пределах 2,5А – 7А, чего вполне достаточно для зарядки большинства аккумуляторов. Резистором R14 подстраивается необходимый ток заряда конкретного аккумулятора исходя из расчета одной десятой части его емкости. В зависимости от выбранного режима, ток разряда АКБ будет составлять 2,5 Ампера, или 0,65 Ампер при выставлении режима десульфитация. Изменяя значения резисторов R35 и R36, можно изменять время разряда и заряда аккумулятора. R35 отвечает за заряд, а R36 – за разряд. В схеме установлено время заряда 17с, а разряда – 5с. Мощность, потребляемая устройством, составляет 30 Вт, при минимальном токе заряда и достигает 90 Вт при использовании максимального тока заряда. 

Теперь о режимах работы зарядного устройства. При выставлении кнопки SA2 в положение, которое указано на схеме устройства и при включенной кнопке SA1 происходит обычный заряд аккумулятора, с возможностью выбрать необходимый ток заряда. SA2, выставленная в режим десульфитации, позволяет перейти к цикличному заряду-разряду батарее, который продолжается до момента достижения напряжения аккумулятора 14,5 В. Кнопка SB1 задает режим разряда АКБ до указанного напряжения, а затем автоматически происходит заряд до 14,5В методом десуфитации. При достижении конечного напряжения, устройство прекращает заряд и отключается, что очень удобно, так как не требуется постоянно наблюдать за напряжением на клеммах аккумулятора. Для восстановления аккумулятора предусмотрен отдельный режим, который задается нажиманием кнопки SA3. Зарядка ведется непрерывно в этом случае, так что придется наблюдать самостоятельно за процессом.

В схему дополнительно можно подключить охлаждение при помощи вентилятора, что позволит значительно уменьшить радиаторы и обеспечить надежный теплоотвод. При этом, габариты конечного устройства уменьшаться, равно, как и вес прибора. Подключение производится согласно следующей схеме на рис. 2:

Рис. 2. Схема подключения

 

Трансформатор был намотан на основе взятого из отечественного телевизора УПИМЦТ. Все обмотки удаляются и мотаются новые. Первичная обмотка самодельного трансформатора мотается в два провода, вторичная тоже в два, а третья обмотка мотается в семь проводов. Все обмотки состоят из провода ПЭВ 2. Первичная обмотка из 91-го витка, а вторичная – из 4-ех витков. Диаметр провода – 0,5 мм. Для третьей обмотки использован провод диаметром 0,6 мм, количеством витков 9. Наматывать провод необходимо без перехлестов. За этим нужно следить внимательно, так как это не только трансформатор по схеме, но и дросселя. Изоляция между обмотками была осуществлена бумагой, но можно использовать несколько слоев скотча. Начала и концы обмоток помечаются отдельно, чтобы ничего не спутать. 

R26 – это шунт, состоящий из кусочка нихрома в диаметре 2 мм сопротивлением 0,1 Ом. В схеме предусмотрена индикация процесса заряда. Можно использовать отдельное устройство, в самостоятельном исполнении, приобретенное на радио-рынке или в магазине электронных компонентов. Можно использовать индикацию из старых магнитофонов, одна из которых под названием М4761. Предусмотрена схема самостоятельной сборки на рис. 3:

Рис. 3. Схема самостоятельной сборки

 

Разводку платы можно осуществить самостоятельно при помощи любой, предназначенной, для этого, программой. Можно использовать готовый вариант:

Рис. 4. Печатная плата устройства

 

Настройка несложная. Собрав ЗУ, потребуется выкрутить две лампочки HL1 и HL3. При подключенном аккумуляторе, регулируя R34, выставляется напряжение в 10,5 Вольт, до момента загорания лампочки HL2. Напряжение 14,2 Вольта достигается регулированием резистора R31, о чем сигнализирует выключение этой же лампочки. Выкрученные лампы следует включить обратно и можно пользоваться собранным своими руками импульсным зарядным устройством для автомобильных аккумуляторов.

Автор: RadioRadar

Мнения читателей
  • Геннадий/04.04.2018 — 20:32

    Схема не работоспособная, в этом виде.Во первых, К561ЛЕ5 имеет очень маленький выходной ток (0.24ма).А для того, чтобы засветился светодиод оптопары АОТ127 (VS2), надоиметь на входе оптопары, ток от 5 до 10 ма, при напряжении от 1 до 1.6 в max. D1 КР1033ЕУ5 по входу (3) будет закрыта(не работает)Вот как то так.И ЕЩЁ, ЕСЛИ ЗАИМСТВУЕШ СХЕМУ, ТО ОСТАВЛЯЙ ССЫЛКУ !!! ????? !!!!

  • Геннадий/26. 12.2017 — 21:13

    Номинал конденсатора С18?

  • admin/25.12.2017 — 22:31

    Если нажать на схему Рис.1- она откроется в новом окне, в лучшем качестве.

  • Геннадий/25.12.2017 — 22:04

    Качество схемы зарядного устройства, рис1 можно бы сделать и покачественнее, а то плохо читаются местами номиналы радиодеталей.На первый взгляд, всё написано доходчиво и лаконично, спасибо за хорошую работу.Соберу и отпишусь.

Вы можете оставить свой комментарий, мнение или вопрос по приведенному выше материалу:

как сделать своими руками, схема

Автор Владимир Остапенко На чтение 18 мин Просмотров 18.2к. Опубликовано Обновлено

Во время эксплуатации автомобиля нередко возникает ситуация, когда аккумуляторную батарею (АКБ) приходится снимать и заряжать стационарным зарядным устройством (ЗУ). Его, конечно же, можно купить, а возможно сделать своими руками. В этой статье рассмотрим несколько обычных зарядных устройств для автомобильного аккумулятора, которые несложно повторить даже начинающему радиотехнику.

Содержание

  1. Требования к зарядке АКБ
  2. Как сделать самодельное зарядное устройство для АКБ
  3. Простой “зарядник” с гасящими конденсаторами
  4. Прибор для зарядки и тренировки аккумулятора
  5. Зарядное устройство для АКБ с ШИМ-регулировкой тока
  6. Зарядное устройство с фазоимпульсной регулировкой
  7. Зарядное устройство с регулировкой по высокому напряжению (по первичной обмотке)
  8. Автоматическое зарядное устройство из драйвера для светодиодных лент
  9. Зарядное устройство из блока питания ПК
  10. Как заряжать аккумулятор от самодельного устройства

Требования к зарядке АКБ

Прежде чем сделать зарядное устройство для автомобильного аккумулятора своими руками, рассмотрим .

  1. Зарядный ток не должен превышать рекомендованный производителем батареи. Если зарядный ток не указан (неизвестен), то он не должен превышать 10 % от принятой ёмкости аккумулятора.
  2. В конце процесса зарядки ток желательно уменьшить, чтобы .
  3. Недопустима перезарядка АКБ. Как только напряжение на клеммах заряжаемой батареи достигнет значения 13,8 ± 0,15 В, зарядку стоит прекратить. Это будет существенно для AGM и гелевых батарей.
  4. При пропадании сетевого напряжения не должна происходить разрядка батареи через зарядное устройство. Глубокий разряд для свинцовой АКБ губителен.

Исходя из вышесказанного, определяем требования к зарядному устройству:

  1. Должно обеспечивать регулировку зарядного тока.
  2. Потребуется наличие встроенных измерительных приборов – амперметра и вольтметра, – позволяющих контролировать ток заряда и .
  3. Обязательно наличие цепей, предотвращающих разряд АКБ через зарядное устройство при пропадании сетевого напряжения.

Полезно. Первый и второй пункты могут выполняться оператором вручную, но существуют и автоматические ЗУ, самостоятельно регулирующие ток во время зарядки и отключающие батарею, как только она полностью зарядится. Третий пункт должен выполняться независимо от сложности схемы ЗУ.

Как сделать самодельное зарядное устройство для АКБ

А теперь рассмотрим несколько схем разной сложности, которые отвечают вышеперечисленным требованиям к ЗУ и не особо сложны для повторения.

Простой “зарядник” с гасящими конденсаторами

Это несложное устройство позволяет заряжать аккумуляторы ёмкостью до 100 А·ч произвольным током, который регулируется в интервале 1–10 А с шагом 1 А, что будет достаточно для качественного обслуживания любого автомобильного аккумулятора.

  

Схема простого зарядного устройства с гасящими конденсаторами

В ЗУ встроен понижающий трансформатор Тр1, сетевое напряжение на него подаётся через блок гасящих конденсаторов С1-С4. Каждый из конденсаторов имеет собственный переключатель, включающий его в цепь питания трансформатора. Ёмкости конденсаторов подстроены таким образом, что переключатели S1–S4 имеют вес 1, 2, 4, 8 А соответственно.

Комбинируя положения переключателей, можно выбрать произвольный ток зарядки в диапазоне 1-10 А, с шагом 1 А. К примеру, если необходимо выставить ток 6 А, то нужно замкнуть переключатели S3 и S2. Ток в 5 А обеспечит включение переключателей S3 и S1.

Пониженное трансформатором напряжение подаётся на диодный мост, выпрямляется и выходит на клеммы Х3 и Х4, к которым подключается заряжаемая батарея. Ток зарядки измеряют амперметром PA1, а вольтметр PV1 выдаёт напряжение на клеммах батареи. Цепей защиты от разряда батареи через зарядное устройство в случае пропадания сетевого напряжения в этой схеме ЗУ нет, поскольку их роль исполняет диодный мост.

О деталях. Конденсаторы С1–С4 подбирают неполярные типа МБГО, МБГП, МБЧГ, КБГ-МН, МБМ или МБГЧ с рабочим напряжением не менее 300 В для МБГЧ и КБГ-МН и не более 600 В для приборов остальных типов.

Категорически недопустимо использование электролитических конденсаторов, даже если они рассчитаны на соответствующее напряжение. “Электролит” — полярный прибор, работающий только в цепях постоянного тока. При подключении в цепь переменного тока он просто взорвётся.

Вместо диодов Д242 можно применять любые другие, выдерживающие ток не менее 10 А и обратное напряжение не ниже 25 В. Подходят, например, диоды Д214 или германиевые Д305. При любых условиях их нужно поставить на радиаторы. Трансформатор Тр1 обычный сетевой с выходным напряжением 24–26 В, способный обеспечить хотя бы полуторный зарядный ток. Приборы PA1 и PV2 — амперметр с пределом измерения 10–15 А и вольтметр на напряжение 20 В соответственно.

Указанное зарядное устройство можно применять и для зарядки батарей с другим напряжением (например, 6-вольтовых), но здесь необходимо учитывать, что «вес» тумблеров S1–S4 будет другой, и придётся определяться по амперметру.

Прибор для зарядки и тренировки аккумулятора

Это самодельное зарядное устройство заряжает аккумулятор пульсирующим током, причём в паузах между импульсами зарядки батарея разряжается током порядка 0,5 А. Это позволяет не только качественно зарядить батарею, но и успешно , осуществляя тренировку АКБ. Зарядный ток в импульсе может достигать 10 А, регулировка тока плавная.

Электрическая схема зарядного устройства для тренировки батарей

Сетевое напряжение понижается трансформатором Т1 до величины 25 В и подаётся на однополупериодный выпрямитель, собранный на диодах D1 и D2, включенных параллельно для увеличения мощности. Регулировка тока происходит при помощи ключа, встроенного на транзисторе VТ1, включенного в минусовую цепь зарядки. Степень открытия транзистора, а значит, и зарядный ток — регулируется с помощью переменного резистора R1. Питание резистор получает от простейшего параметрического стабилизатора R1, D3.

По окончании каждого положительного полупериода диоды запираются, и до начала следующего — батарея разряжается через балластный резистор R4. Ток разрядки фиксированный и, как было сказано выше, составляет 500 мА. Зарядный ток контролируется при помощи амперметра PA1, а напряжение на батарее вольтметром PV1.

Мнение эксперта

Алексей Бартош

Специалист по ремонту, обслуживанию электрооборудования и промышленной электроники.

Задать вопрос

Контролируя зарядный ток, необходимо учитывать, что его часть (около 10 %) течёт через балластный резистор R4. Кроме того, прибор показывает усреднённое значение, тогда как зарядка батареи производится только в половину периода. Поэтому, к примеру, при импульсном зарядном токе в 5 А амперметр с учётом потерь на R4 покажет 1,8 А.

Для предупреждения глубокого разряда батареи через балластный резистор при пропадании сетевого напряжения введён узел защиты, собранный на реле К1. Пока зарядное устройство работает, его обмотка находится под напряжением, а контакты К1.1 и К1.2 (включены параллельно для увеличения мощности) подключают батарею к ЗУ.  При пропадании сетевого напряжения реле отпускает, и его контакты отключают заряжаемый аккумулятор.

О деталях. На месте Т1 может работать любой силовой трансформатор, выдающий 22–25 В при токе в 5 А. Диоды D1 D2 — любые десятиамперные, выдерживающие обратное напряжение не ниже 40 В. Они установлены на общий радиатор. VТ1 — транзистор серии КТ827 с любой буквой. Его тоже нужно поставить на радиатор. Если корпус прибора металлический, то в качестве радиатора может выступать и он.

Стабилитрон D3 — любой маломощный с напряжением стабилизации 7,5–12 В. Резисторы R3 и R4 — С5-16МВ и ПЭВ-15 соответственно. В качестве К1 используется реле переменного тока РПУ-0 на напряжение срабатывания 24 В. Каждая группа его контактов выдерживает ток до 6 А.

 Полезно. При необходимости можно применять реле постоянного тока, но тогда его обмотку придётся подключить к схеме через выпрямительный мост.

Зарядное устройство для АКБ с ШИМ-регулировкой тока

Эта схема способна обеспечить зарядный ток до 6 А и выделяется небольшими габаритами, поскольку использует широтно-импульсный метод регулирования (ШИМ), а управляющий током зарядки транзистор работает в ключевом режиме, что существенно снижает рассеиваемую на нём мощность.

Электросхема зарядного устройства с ШИМ

Задающий генератор блока регулировки тока собран на элементах DD1.1, DD1.2 микросхемы К561ЛА7, элементы DD1.3, DD1.4 — буферные. Частота генератора — 13 кГц, скважность плавно регулируется с помощью переменного резистора R3. С генератора сигнал поступает на регулирующий элемент — мощный полевой транзистор VT1, работающий в ключевом режиме.

В зависимости от положения движка переменного резистора отношение времени открытия транзистора к его закрытому состоянию меняется, а значит, изменяется и средний ток зарядки батареи, который можно контролировать при помощи амперметра PA1.

Питание микросхема получает от простейшего параметрического стабилизатора, собранного на элементах R1, VD4. Сам стабилизатор подключен к выпрямительному мосту, обеспечивающему напряжение зарядки. Из соображений компактности, диодный мост собран на полупроводниках Шоттки с незначительным падением напряжения. Лампа EL1 — индикаторная.

О деталях. Вторичная обмотка трансформатора Т1 должна обеспечивать ток 6–7 А при напряжении 16–20 В. Если использовать трансформатор, у вторичной обмотки которого есть отвод от середины, то выпрямитель можно собрать по схеме, приведённой ниже, сократив число выпрямительных диодов вдвое.

Двухполупериодный выпрямитель на двух диодах

В мостовом выпрямителе используется диодная сборка VD1.1 VD1.2 и два отдельных диода VD3 и VD4. Все элементы установлены на общий радиатор 160х45 мм через слюдяные прокладки. При необходимости диоды Шоттки можно заменить обычными выпрямительными, но габариты устройства при этом увеличатся, поскольку понадобится радиатор большего размера. При замене необходимо учитывать, что диоды должны выдерживать ток 10 А и обратное напряжение не менее 40 В.

Если зарядный ток не будет превышать 5 А, то транзистор VT1 устанавливать на радиатор не нужно. При большем токе понадобится радиатор — медная или алюминиевая пластина размером 50х50х1 мм.

В качестве амперметра используется индикатор записи магнитофона М476/2, включенный параллельно с шунтом. Шунт представляет собой кусок медного обмоточного провода ПЭВ-2 1,5, намотанный на оправку диаметром 8 мм. Количество витков — 16, сопротивление — около 0,1 Ом.

Зарядное устройство с фазоимпульсной регулировкой

Это мощное зарядное устройство славится тем, что собрано из доступных советских деталей, которые наверняка найдутся у любого радиотехника. Прибор обеспечивает плавную регулировку тока в пределах 0 … 10 А и пригоден для зарядки аккумуляторов ёмкостью до 100 А·ч.

Схема зарядного устройства для автомобильных аккумуляторов с фазоимпульсной регулировкой

Это обычный тиристорный регулятор напряжения с фазоимпульсным управлением. Роль элемента управления выполняет аналог однопереходного транзистора, сделанный на двух биполярных приборах VT1 и VT2. Изменяя сопротивление переменного резистора R1, мы меняем время задержки открывания тиристора относительно начала полупериода, а значит, и ток зарядки, который контролируется по показаниям амперметра PA1. Для измерения напряжения на клеммах батареи служит прибор PV1. Питается устройство от мостового выпрямителя VD1–VD4, подключенного к понижающему трансформатору Т1.

О деталях. Вместо заданного на схеме тиристора КУ202В можно использовать КУ202 с буквами Г–Е, а также более мощные Т-160 и Т-250. Диоды VD1–VD4 — обычные выпрямительные с обратным напряжением не менее 40 В и выдерживающие ток 10 А. Подойдут, например, Д242, Д243, Д245, КД203, КД210, КД213 и т. п.

Тиристор и выпрямительные диоды необходимо установить на радиаторы с эффективной площадью рассеяния 100 см2 каждый. Если используется мощный тиристор серии «Т», то на радиатор его ставить не нужно. В качестве Т1 можно использовать любой силовой трансформатор, обеспечивающий ток 10 А при напряжении 18–22 В. Отлично подойдёт, к примеру ТН-61, имеющий три обмотки по 6,3 В при токе 8 А. Этого вполне достаточно для зарядки батареи ёмкостью до 80 А·ч.

Транзистор КТ361А можно заменить на КТ361б – КТ361Е, КТ502В, КТ3107А, КТ501Ж – КТ501К, КТ502Г. На месте VT2 может работать КТ315А-КТ315Д, КТ3102А, КТ312Б. Вместо диода КД 105Д подойдут КД105Г, КД105В, Д226 (с любым индексом). Измерительный прибор PA1 — амперметр с пределом измерения 10–15 А или микроамперметр с соответствующим шунтом. PV1 — вольтметр с пределом измерения 15–20 В.

Зарядное устройство с регулировкой по высокому напряжению (по первичной обмотке)

Это устройство отличается от предыдущих тем, что тиристорный регулятор зарядного тока расположен в цепи первичной обмотки силового трансформатора. При помощи этого ЗУ можно заряжать батареи током до 6 А. Поскольку коммутируемые токи по напряжению 220 В будут намного меньше, чем по низкому, радиатор регулирующему элементу не нужен. Кроме того, амперметр PA1 не имеет громоздкого шунта, а значит, устройство получается несколько компактнее.

Зарядное устройство с регулировкой по высокому напряжению

В этой схеме используется всё тот же фазоимпульсный метод. Поскольку тиристор не может работать в цепях переменного тока, он включен через диодный мост  VD1–VD4. Управляет тиристором однопереходный транзистор VT1. Задержка его открывания от начала полупериода зависит от положения движка переменного резистора R5. Именно им и регулируется зарядный ток.

В момент открытия тиристор шунтирует диодный мост, и всё сетевое напряжение прикладывается к первичной обмотке T1. При этом со вторичной обмотки снимается напряжение определённой величины (0–20 В, в зависимости от положения движка переменного резистора R5) и, пройдя через выпрямитель VD5–VD8, поступает на клеммы заряжаемого аккумулятора. Узел измерения тока собран на микроамперметре, зашунтированном резистором R1. Резистор R2 служит для калибровки прибора. Лампа HL1 — индикаторная.

Мнение эксперта

Алексей Бартош

Специалист по ремонту, обслуживанию электрооборудования и промышленной электроники.

Задать вопрос

Вольтметра это зарядное устройство не имеет, поэтому контролировать напряжение на клеммах заряжаемого аккумулятора придётся внешним вольтметром, к примеру, тестером. Впрочем, ничего не мешает просто встроить вольтметр в прибор.

О деталях. На месте VD1–VD4 могут работать диоды Д231–Д234, Д245, Д247 с любым буквенным индексом, КД202 с буквами К, М, Р. Радиаторы им, как и тиристору, не нужны. Вместо германиевых Д305 в низковольтном выпрямителе можно использовать Д231–Д233 без буквенного индекса или с буквой А. Их придётся установить на радиаторы с площадью поверхности 100 см2.

Конденсатор С1 должен иметь по возможности меньший ТКЕ, иначе при прогреве устройства зарядный ток «поплывёт». Подойдут конденсаторы типа К73-17 или К73-24. Трансформатор Т1 должен обеспечивать на вторичной обмотке напряжение 18–22 В при токе нагрузки 6–7 А. Микроамперметр (PA1) можно взять любой с током полного отклонения 100 мкА.

Важно! Все элементы зарядного устройства, включенные в цепь первичной обмотки, во время работы прибора находятся под опасным для жизни напряжением. Перед любой перепайкой или изменением схемы обязательно отключаем конструкцию от сети, а на шток переменного резистора R5 надеваем ручку из изоляционного материала.

Автоматическое зарядное устройство из драйвера для светодиодных лент

Драйвер для питания светодиодных лент, если он достаточно мощный (не менее 100 Вт), — готовое зарядное устройство для автомобильного аккумулятора. Единственное, что нас не устраивает — это выходное напряжение. Драйвер выдаёт 12 вольт, конечное напряжение зарядки свинцово-кислотного аккумулятора — 13,8 В. Если учесть падение напряжения на зарядных проводах, то нам нужно заставить выдавать блок питания 14,0–14,4 вольта (зависит от толщины проводов). Этим и займёмся.

Для эксперимента возьмём драйвер мощностью 110 Вт — он сможет развить зарядный ток в 7,6 А — более чем достаточно для любого автомобильного аккумулятора. Взглянем на типовую схему драйвера китайского производства:

Типовая схема драйвера для светодиодной ленты китайского производства

Нас интересует подстроечный резистор P1 (справа вверху на блоке «Выпрямитель 12 В»). Подключаем к выходу устройства вольтметр, само устройство подключаем к сети. Небольшой отвёрткой вращаем ползунок подстроечного резистора (на плате он обозначен “VR”), пытаясь поднять напряжение до 14,0–14,4 В. Скорее всего, сделать это не удастся — слишком велика разница. На нашем блоке напряжение удалось вытянуть лишь до 13,26 В.

Диапазона регулировки подстроечного резистора нам не хватило

Тут есть два варианта:

  1. Заменить подстроечный резистор другим, большего номинала.
  2. Заменить постоянный резистор R37, стоящий в делителе, другим, меньшего номинала.

Воспользуемся вторым вариантом. Но тут возникает непредвиденная проблема — нумерация элементов на нашем блоке и на схеме не совпадают. «Пляшем» от подстроечного резистора, разбираясь в дорожках, и выясняем, что на нашей плате этот резистор обозначен “R30”.

Нас интересует резистор R30

На схеме он имеет номинал 2,2 кОм, но мы рисковать не будем, поскольку схема явно не родная — выпаиваем его и измеряем сопротивление омметром. Результат — 5 кОм.

Номинал нашего R30 составил 5 кОм

Берём переменный резистор того же номинала, впаиваем на место R30, выводим движок на максимальное сопротивление и включаем блок питания в сеть. Постепенно уменьшая сопротивление, устанавливаем необходимую величину выходного напряжения.

Напряжение на выходе составляет 14,5 В

Здесь оно несколько выше нужного, но позже мы подгоним его более точно штатным подстроечным резистором VR.

Важно! Движок переменного резистора крутим очень осторожно, стараясь не поднимать напряжение выше 15 В, поскольку сглаживающие конденсаторы в фильтре драйвера рассчитаны на максимальное напряжение в 16 В.

Выпаиваем переменный резистор, измеряем его сопротивление.

Нам нужен постоянный резистор сопротивлением 4,5 кОм

Такого номинала не существует, устанавливаем ближайший — 4,6 кОм. Снова включаем устройство, штатным подстроечным резистором VR выставляем выходное напряжение 14,0– 14,4 В. Собираем блок — и у нас в руках готовое зарядное устройство со стабилизированным выходным напряжением.

Особая прелесть такого решения состоит в том, что устройство является автоматическим и никогда не перезарядит батарею, даже если мы забудем вовремя снять её с зарядки. Идеальное решение для AGM и гелевых батарей, которые очень боятся перезаряда.

Зарядное устройство из блока питания ПК

Это устройство тоже является автоматическим — оно, как и предыдущая конструкция, не даст перезарядить аккумуляторную батарею, поскольку работает в режиме стабилизации напряжения и по окончании зарядки ток через аккумулятор падает до 0. Доработке будет подвергаться блок питания персонального компьютера, собранный на ШИМ-микросхеме TL494 или её аналогах, список которых приведён в табличке ниже.

Аналоги микросхемы TL494 

Прибор

Описание

Прибор

Описание

GL494Зарубежный полный аналогM5T494PЗарубежный полный аналог
IR9494NMB3759
MB3759UA494PC
NE5561UC494
UPC494UC494CN
XR494UPC494C
ECG1729MB3759
IR3M02UA494DM
IR9494IR9494
MB3759MB3759
UPC494C1114ЕУ3Отечественный полный аналог
UA494DC1114ЕУ4
ECG17291114ЕУЗ
HA11794К1114ЕУ3
IR3M02КР1114ЕУ4

Итак, разбираем блок, вынимаем из корпуса плату. Из платы выпаиваем все питающие провода, кроме зеленого. Он служит для запуска БП материнской платой. Нам подобное управление не нужно, а потому этот провод мы просто припаиваем к площадкам, к которым раньше припаивались чёрные провода (иначе говоря — замыкаем на минус), чтобы блок питания запускался сразу после подачи на него 220 В.

Зелёный провод управления припаиваем к минусовой шине питания

Теперь к площадкам, к которым подпаивались жёлтые и чёрные провода, припаиваем два толстых провода с «крокодилами» для подключения к аккумулятору. Тот, который подпаивается вместо жёлтых, будет плюсовым, а вместо чёрных — минусовым.

Теперь нужно заставить БП выдавать вместо 12 В нужные для зарядки свинцового аккумулятора 13,8–14 В (14,4 с учётом падения напряжения на проводах под нагрузкой). Делаем это точно так же, как и в предыдущей конструкции, — заменой резистора на прибор другого номинала.

Находим первый вывод микросхемы TL494 или её аналога, ориентируясь по ключу-выемке на корпусе прибора. На фото ниже первый вывод помечен красной, а сам ключ — зелёными стрелками.

Нумерация выводов ведётся от ключа против часовой стрелки

Переворачиваем плату и по дорожке, ведущей от этого вывода, определяем, что к нему подпаяны три резистора. Нас интересует тот, который вторым выводом подключен к шине +12 В. На фото ниже он помечен красным лаком.

Нас интересует этот резистор

Номинал этого резистора нужно изменить (увеличить), но на сколько? Выпаиваем его и замеряем сопротивление. В нашем случае сопротивление составило 38 кОм. Берём переменный резистор примерно вчетверо большего номинала, выставляем движком сопротивление 38 кОм и впаиваем его вместо того, который выпаяли. Плавно увеличивая сопротивление, выставляем выходное напряжение на значение 14,4 В.

Установка выходного напряжения при помощи переменного резистора

Важно! Для каждого блока питания номинал этого резистора будет разный, т. к. схемы и детали в блоках разные, но алгоритм изменения напряжения один для всех. При поднятии напряжения свыше 15 В, может быть сорвана генерация ШИМ. После этого блок придётся перезагружать, предварительно уменьшив сопротивление переменного резистора.

Выпаиваем переменный резистор, измеряем его сопротивление, подбираем постоянный ближайшего номинала, впаиваем. Проверяем наше зарядное устройство, нагрузив его лампочкой от автомобильной фары и контролируя выходное напряжение под нагрузкой. Оно должно остаться практически тем же — 14 В.

Под нагрузкой выходное напряжение “просело” на несколько десятых — это нормально

Как заряжать аккумулятор от самодельного устройства

Зарядка аккумулятора самодельным устройством ничем не отличается от зарядки промышленным прибором.

  1. Выводим регулятор тока в «0».
  2. Подключаем заряжаемый аккумулятор к клеммам ЗУ.
  3. Подаём питание на ЗУ.
  4. Устанавливаем необходимый ток зарядки.
  5. При напряжении 13,2–13,4 В на клеммах батареи уменьшаем ток вдвое.
  6. При напряжении на клеммах 13,8 В выводим регулятор тока в «0», выключаем питание ЗУ, отключаем аккумулятор.

Мнение эксперта

Алексей Бартош

Специалист по ремонту, обслуживанию электрооборудования и промышленной электроники.

Задать вопрос

В двух последних конструкциях контролировать напряжение на батарее не нужно — как только аккумулятор зарядится, ток зарядки станет равным нулю.

Вот в принципе и всё о самодельных зарядных устройствах. Прочитав этот материал, мы без труда сможем подобрать наиболее подходящую схему зарядного устройства и повторить её.

Сейчас читают:

Зарядное устройство из советских деталей для АКБ

Всех приветствую, сегодня мы соберем зарядное устройство для автомобильных аккумуляторов, но зарядка эта весьма непростая. Во-первых я буду использовать только и только советские компоненты для сборки, во-вторых несмотря на то, что схема довольно старая, обладает весьма неплохими параметрами и по классу может тягаться с хорошими, промышленными устройствами.

Основой схемы является мощный, железный трансформатор, что повышает надежность зарядного устройства, сейчас как мы знаем все делают на базе импульсных источников питания, но они даже рядом не стоят с хорошим железным трансформатором.

По сути это трансформатор + стабилизатор, представленная схема была опубликована свыше 10 лет назад в одном из радиожурналов и показалась мне очень интересной. Это стабилизатор тока и напряжения, метод стабильного тока и напряжения самый лучший для зарядки аккумуляторов.

Первая часть схемы из себя представляет стабилизатор тока с возможностью регулировки в диапозоне от 0 до 5-6 ампер, но схему можно слегка переделать и снять ток скажем в 10 ампер.

Правая часть из себя представляет стабилизаторно-фиксированное напряжение, оно подбирается в зависимости заряжаемого аккумулятора и задает напряжении окончания заряда, для автомобильных аккумуляторов это напряжение лежит в пределах от 13,5 до 14 вольт.

Силовым элементом стабилизатора является мощной биполярный транзистор с током коллектора от 10 ампер. Нужное напряжение на выходе задаётся стабилитроном, кстати, настраивают схему под нагрузкой, иначе стабилизация напряжения работать не будет.

Поговорим о трансформаторе.

Важно чтобы он обеспечивал выходное напряжение от 15 до 25 вольт, стоит учитывать то, что на стабилизаторе будут некоторые потери и выходное напряжение всегда меньше входного, в нашем случае на 1 вольт.

Ток вторичной обмотке трансформатора будет зависеть от ваших нужд, в случае зарядки автомобильных аккумуляторов трансформатор должен обеспечивать максимальный ток в 5-6 ампер, этого достаточно для нормальной зарядки аккумулятора с ёмкостью 50-60 ампер\часов.

Можно заряжать аккумуляторы и большей ёмкости, естественно, время зарядки в этом случае увеличится.

Мой трансформатор обеспечивает выходное напряжение в районе 22 вольт, схема имеет защиту от переполюсовки питания, в случае, если вы перепутаете полярность откроется защитный диод спалив предохранитель.

Имеем токовый шунт (R1), который задействован в схеме стабилизатора тока, по сути это датчик тока, который можно собрать из низкоомных резисторов, сопротивление шунта должно быть в пределах от 0,1 до 0,3 ом, мощность не менее 5 ватт.

В моём варианте использовано 2 резистора по 0,51 ом соединенных параллельно.

Мало мощный транзистор кт3107 может быть заменен любым другим транзистором прямой проводимости, можно даже использовать транзисторы средней мощности наподобие кт814-кт816.

Пара ключей кт815, также могут быть заменены на другие ключи средней мощности, обратной проводимости, можно даже КТ805, 819 и им подобные.

Один из этих ключей управляет силовым транзистором, такое включение обеспечивает большое усиление по току. Эту часть можно заменить всего 1 составным транзистором на подобии кт827, но они нынче стоят очень дорого).

Стабилитрон в схеме стабилизации тока (VD5) должен иметь напряжение стабилизации от 5 до 8 вольт. Если не находите нужных стабилитронов, можно подключить несколько последовательно для получения нужного напряжения стабилизации.Если не находите нужных стабилитронов, можно подключить несколько последовательно для получения нужного напряжения стабилизации.

Силовой транзистор (VT4), тут очень много аналогов, например КТ805, 809,819 и т. д.. с током от 10 ампер.

Этот транзистор обязательно устанавливают на массивный радиатор, так как схема линейная при больших токах тепловыделение будет внушительным, также советую дополнить конструкцию кулером.

Диодный выпрямитель — использовал штатные советские диоды Д242, они бывают без индекса, с индексом «а» или с индексом «б», первые два варианта на 10 ампер, диоды с индексом «б» на 5 ампер.

Мне естественно не повезло и диоды оказались именно с индексом «б» выдраны они из старого советского усилителя. Благо в усилителе оказалось 8 таких диодов, из которых был собран один мощный мост на 10 амперСхема защищена 2 предохранителями, 1 из них сетевой. ( FU1, FU2 )

Готовая схема в наладке не нуждается, единственное, что вам нужно сделать это подобрать стабилитрон VD6 на нужное напряжение.

Процесс заряда простой, подключаем аккумулятор, путём вращения верхнего переменного резистора выставляем нужный ток заряда, нижний резистор предназначен для установки максимального тока ограничения, в нашем случае 5-6 ампер.

Даже при коротком замыкании выходных клемм ток ограничивается на уровне заданного.

Печатная плата получилось довольно компактный, она так-же есть в архиве.

В следующей статье мы закончим сборку этого агрегата, установим всё в корпус, подберем нужные индикатор, в общем скучать точно не придется.

Архив к статье: скачать…

Автор; АКА Касьян

Как вам статья?

Простое зарядное устройство автомобильного аккумулятора и схема индикатора

Автомобильный аккумулятор представляет собой типичный свинцово-кислотный аккумулятор, состоящий примерно из 6 элементов, каждый по 2 В, так что общее напряжение аккумулятора составляет около 12 В. Типичные значения номиналов аккумуляторов находятся в диапазоне от 20 до 100 Ач. Здесь мы рассматриваем автомобильный аккумулятор емкостью 40 Ач, так что требуемый зарядный ток будет около 4 А. В этой статье описывается принцип действия, конструкция и работа простого зарядного устройства автомобильного аккумулятора от сети переменного тока и секции управления с обратной связью для управления зарядкой аккумулятора.

Схема

Схема зарядного устройства автомобильного аккумулятора Принцип работы:

Это простая схема зарядного устройства автомобильного аккумулятора с индикацией. Аккумулятор заряжается от сети переменного тока 230 В, 50 Гц. Это переменное напряжение выпрямляется и фильтруется для получения нерегулируемого постоянного напряжения, используемого для зарядки аккумулятора через реле. Это напряжение батареи постоянно контролируется схемой обратной связи, состоящей из делителя потенциала, диода и транзистора. Реле и схема обратной связи питаются регулируемым постоянным напряжением (полученным с помощью регулятора напряжения). Когда напряжение батареи превышает максимальное значение, схема обратной связи спроектирована таким образом, что реле отключается и зарядка батареи прекращается.

Также узнайте, как работает схема зарядного устройства для свинцово-кислотных аккумуляторов?

Схема автомобильного зарядного устройства: Схема автомобильного зарядного устройства
Схема автомобильного зарядного устройства:

обратная связь и раздел нагрузки.

Шаги проектирования источника питания:

  1. Здесь искомой нагрузкой является автомобильный аккумулятор емкостью около 40 Ач. Поскольку зарядный ток батареи должен составлять 10% от номинального значения батареи, требуемый зарядный ток будет около 4А.
  2. Теперь требуемый ток вторичной обмотки трансформатора будет около 1,8*4, т.е. около 8А. Поскольку требуемое напряжение нагрузки составляет 12 В, мы можем согласиться на трансформатор с номиналом 12 В / 8 А. Теперь требуемое среднеквадратичное значение напряжения переменного тока составляет около 12 В, пиковое напряжение будет около 14,4 В, т.е. 15 В.
  3. Поскольку здесь мы используем мостовой выпрямитель, PIV для каждого диода должен более чем в четыре раза превышать пиковое переменное напряжение, т. е. более 90 В. Здесь мы выбираем диоды 1N4001 с номиналом PIV около 100В.
  4. Поскольку здесь мы также проектируем регулируемый источник питания, максимально допустимая пульсация будет равна пиковому напряжению конденсатора минус требуемое минимальное входное напряжение для регулятора. Здесь мы используем стабилизатор напряжения LM7812 для подачи регулируемого напряжения 5 В на реле и таймер 555. Таким образом, пульсации будут около 4 В (пиковое напряжение около 15 В и входное напряжение регулятора около 8 В). Таким образом, значение конденсатора фильтра будет рассчитано примерно как 10 мФ.

Конструкция секции обратной связи и нагрузки:

Проектирование секции обратной связи и нагрузки включает выбор резисторов для секции делителя напряжения. Поскольку диод будет работать только тогда, когда напряжение батареи достигнет 14,4 В, значения резисторов должны быть такими, чтобы положительное напряжение, подаваемое на диод, составляло не менее 3 В, когда напряжение батареи близко к максимальному.

Имея это в виду и проведя необходимые расчеты, выбираем потенциометр на 100 Ом и другие резисторы на 100 Ом и 820 Ом каждый.

Читайте также – Работа цепи зарядного устройства солнечной батареи и ее применение

Работа цепи зарядного устройства автомобильного аккумулятора:

Работа цепи начинается после подачи питания. Напряжение переменного тока 230 В RMS понижается до напряжения 15 В RMS с помощью понижающего трансформатора. Затем это низковольтное переменное напряжение выпрямляется мостовым выпрямителем для получения нестабилизированного постоянного напряжения с пульсациями переменного тока. Конденсатор фильтра позволяет пульсациям переменного тока проходить через него, тем самым создавая на нем нерегулируемое и отфильтрованное постоянное напряжение. Здесь имеют место две операции: – 1. Это нерегулируемое постоянное напряжение подается непосредственно на нагрузку постоянного тока (в данном случае на батарею) через реле. 2. Это нестабилизированное постоянное напряжение также подается на регулятор напряжения для получения регулируемого источника постоянного тока 12 В.

Здесь реле представляет собой реле 1С, а общая точка подключена к нормально замкнутому положению, так что ток течет через реле к аккумулятору, и он заряжается. Когда ток проходит через светодиод, он начинает проводить, указывая на то, что батарея заряжается. Часть тока также протекает через последовательные резисторы, так что напряжение батареи делится с помощью делителя потенциала. Первоначально падение напряжения на делителе потенциала недостаточно для смещения диода. Это напряжение равно напряжению батареи и, таким образом, определяет зарядку и разрядку батареи. Первоначально потенциометр устанавливается в среднее положение. По мере того, как напряжение батареи постепенно увеличивается, оно достигает точки, в которой напряжения на делителе потенциала достаточно, чтобы сместить диод в прямом направлении. Когда диод начинает проводить ток, переход база-эмиттер транзистора Q2 достигает насыщения, и транзистор открывается.

Поскольку коллектор транзистора подключен к одному концу катушки реле, последняя получает питание, и точка общего контакта перемещается в нормально разомкнутое положение. Таким образом, источник питания отключается от батареи, и зарядка батареи прекращается. Через некоторое время, когда батарея начинает разряжаться и напряжение на делителе потенциала снова достигает положения, при котором диод смещен в обратном направлении или находится в выключенном состоянии, транзистор принудительно отключается, и теперь таймер находится в выключенном состоянии, так что нет выхода. Общая точка реле возвращается в исходное положение, то есть в нормально замкнутое положение. Аккумулятор снова начинает заряжаться, и весь процесс повторяется.

Применение схемы зарядного устройства автомобильного аккумулятора:
  1. Эта схема является портативной и может использоваться в местах, где доступно питание переменного тока.
  2. Может использоваться для зарядки игрушечных автомобильных аккумуляторов.
Ограничения этой схемы:
  1. Это теоретическая схема, которая может потребовать некоторых практических изменений.
  2. Зарядка и разрядка аккумулятора может занять больше времени.

Цепи зарядного устройства

Battery Charger Circuits использует небольшой постоянный ток для зарядки аккумулятора во время полного процесса зарядки. Когда батарея достигает заданного значения, зарядка CC прекращается. В основном этот метод используется для зарядки NiCd, NiMH и Li-ion аккумуляторов.

Фарва Навази

Введение Предположим, вы работаете с ноутбуком, и вдруг появляется всплывающее окно о том, что ваша батарея разряжается… Подробнее

от Farwah Nawazi

Введение Электронные устройства и гаджеты не могут работать без аккумуляторов и зарядных устройств. Ноутбуки, мобильные телефоны, электронные гаджеты, игровые устройства, … Читать далее

Киран Салим

В этом уроке мы создадим «Схему зарядного устройства для свинцово-кислотных аккумуляторов SLA 12 В». Герметичный … Подробнее

Фарва Навази

Введение По мере того, как технология развивается все больше и больше, устройства теперь используют меньше проводов или совсем не используют провода. … Читать далее

Фарва Навази

Введение Батареи не имели бы применения, если бы у нас не было с собой их зарядных устройств. Цепи зарядного устройства влияют на электронные … Читать далее

by Farwah Nawazi

Введение Батареи не имели бы применения, если бы у нас не было с собой их зарядных устройств. Цепи зарядного устройства влияют на электронные … Читать далее

Фарва Навази

Введение Электронные гаджеты и устройства не могут работать без аккумуляторов и зарядных устройств, Сотовые телефоны, Ноутбуки, электронные устройства, игровые гаджеты, … Читать далее

Фарва Навази

Введение Электронные устройства и гаджеты не работают без аккумуляторов и зарядных устройств. Они являются необходимыми компонентами для … Читать далее

Фариха Захид

В этом уроке мы делаем простой проект автоматических зарядных устройств на 12 В, 9 В и 6 В. Это … Читать далее

Киран Салим

В этом уроке мы создадим «Схему зарядного устройства для свинцово-кислотных аккумуляторов». Для зарядки аккумуляторов мы … Читать

Киран Салим

В этом уроке мы собираемся сделать «Простую электрическую схему зарядного устройства на 12 вольт». Для зарядки … Читать далее

от Afzal Rehmani

В этом мастер-классе мы демонстрируем 12-вольтовую схему зарядного устройства для солнечных батарей, которая может заряжать солнечные батареи. Ориентирован на солнечную энергию … Читать далее

от Ayesha Khan

Введение: Цепь, которая перезаряжает батареи, называется зарядным устройством или перезарядкой. Он обеспечивает постоянный ток … Читать далее

Киран Салим

В этом уроке мы создадим «Схему автоматического зарядного устройства». Зарядное устройство — это … Читать далее

Киран Салим

В этом уроке мы собираемся сделать «Зарядное устройство от солнечной батареи с защитой от перезарядки». Энергия от … Читать далее

Киран Салим

В этом уроке мы создадим «Схему зарядного устройства для гелевых батарей на 12 В». Для зарядки … Читать далее

Схемы зарядных устройств 12 В [с использованием LM317, LM338, L200, транзисторов]

В этой статье мы обсудим список простых схем зарядных устройств 12 В, которые очень просты и дешевы по своей конструкции, но чрезвычайно точны по выходному напряжению и току. спецификации

Все конструкции, представленные здесь, управляются по току, что означает, что их выходы никогда не превысят заданный фиксированный уровень тока.


ОБНОВЛЕНИЕ: Ищете сильноточное зарядное устройство? Эти мощные конструкции зарядных устройств для свинцово-кислотных аккумуляторов могут помочь вам выполнить ваши требования.


Содержимое

Простейшее зарядное устройство на 12 В

Как я неоднократно повторял во многих статьях, основным критерием безопасной зарядки аккумулятора является поддержание максимального входного напряжения немного ток на уровне, не вызывающем нагрева батареи.

Если эти два условия соблюдены, вы можете заряжать любую батарею с помощью минимальной схемы, такой как следующая:

В приведенной выше простейшей схеме 12 В являются среднеквадратичным значением на выходе трансформатора. Это означает, что пиковое напряжение после выпрямления будет 12 x 1,41 = 16,92 В. Хотя это выглядит выше, чем 14 В при полном заряде 12-вольтовой батареи, на самом деле батарея не повреждается из-за низкого тока трансформатора. .

Тем не менее, рекомендуется вынуть батарею, как только амперметр показывает около нуля вольт.

Автоматическое отключение : Если вы хотите, чтобы вышеуказанная конструкция автоматически отключалась при достижении полного уровня заряда, вы можете легко сделать это, добавив каскад BJT с выходом, как показано ниже:

В этом конструкции мы использовали биполярный транзистор с общим эмиттером, база которого зафиксирована на уровне 15 В, а это означает, что напряжение эмиттера никогда не может превысить 14 В.

получает обратное смещение и просто переходит в режим автоматического отключения. Вы можете настроить значение стабилитрона 15 В, пока на выходе для батареи не будет около 14,3 В.

Это превращает первую конструкцию в полностью автоматическую систему зарядного устройства на 12 В, простую в сборке, но абсолютно безопасную.

Кроме того, поскольку фильтрующий конденсатор отсутствует, напряжение 16 В подается не как непрерывный постоянный ток, а как переключение ВКЛ/ВЫКЛ с частотой 100 Гц. Это вызывает меньшую нагрузку на батарею, а также предотвращает сульфатацию пластин батареи.

Для зарядки сильноточной батареи приведенную выше схему можно изменить, как показано ниже:

Почему важен контроль тока (настройка постоянного тока)

Зарядка любой заряжаемой батареи может быть критической и требует особого внимания. Когда входной ток, при котором заряжается аккумулятор, значительно выше, добавление контроля тока становится важным фактором.

Все мы знаем, насколько умен IC LM317, и неудивительно, почему это устройство находит так много применений, требующих точного управления мощностью.

Представленная здесь схема зарядного устройства 12-вольтовой батареи с регулируемым током на микросхеме LM317 показывает, как микросхема LM317 может быть сконфигурирована с помощью всего лишь пары резисторов и обычного трансформаторного моста для зарядки 12-вольтовой батареи с предельной точностью.

Как это работает

ИС в основном подключена в обычном режиме, где резисторы R1 и R2 включены для необходимой регулировки напряжения.

Питание ИС подается от обычной сети трансформатор/диодный мост; напряжение составляет около 14 вольт после фильтрации через C1.

Отфильтрованное напряжение 14 В постоянного тока подается на входной контакт микросхемы.

Вывод ADJ микросхемы закреплен на соединении резистора R1 и переменного резистора R2. R2 можно точно настроить для выравнивания конечного выходного напряжения с батареей.

Без включения Rc схема будет вести себя как простой источник питания LM 317, где ток не будет измеряться и контролироваться.

Однако с Rc вместе с транзистором BC547, размещенным в схеме в показанном положении, он способен измерять ток, подаваемый на батарею.

Пока этот ток находится в пределах желаемого безопасного диапазона, напряжение остается на заданном уровне, однако, если ток имеет тенденцию к росту, напряжение снимается ИС и падает, ограничивая дальнейший рост тока и обеспечивая соответствующую безопасность для батареи.

Формула для расчета Rc:

R = 0,6/I, где I — максимальное желаемое ограничение выходного тока.

Для оптимальной работы ИС требуется радиатор.

Подключенный амперметр используется для контроля состояния заряда аккумулятора. Как только амперметр показывает нулевое напряжение, аккумулятор можно отсоединить от зарядного устройства для использования по назначению.

Схема №1

Список деталей

Следующие детали потребуются для создания описанной выше схемы

  • R1 = 240 Ом,
  • R2 = 10 кОм по умолчанию.
  • C1 = 1000UF/25V,
  • Diodes = 1N4007,
  • TR1 = 0-14V, 1AMP
Как подключить горшок с LM317 или LM338 Схема

. должен быть правильно сконфигурирован или подключен к любой схеме регулятора напряжения LM317 или цепи регулятора напряжения LM338:

Как видно, центральный контакт и любой из внешних контактов выбраны для подключения потенциометра или потенциометра к схеме, третий неподключенный контакт остается неиспользованным.


Схема № 2
Цепь регулируемого сильноточного зарядного устройства LM317 № 3

Для преобразования вышеуказанной схемы в схему зарядного устройства LM317 с регулируемым током можно внести следующие изменения:

Цепь зарядного устройства регулируемого тока № 4

5) Компактная схема зарядного устройства 12-вольтовой батареи с использованием IC LM 338

IC LM338 — выдающееся устройство, которое можно использовать для неограниченного числа потенциальных приложений в электронных схемах. Здесь мы используем его для создания схемы автоматического зарядного устройства на 12 В.

 Почему LM338 IC

Основная функция этой ИС — управление напряжением, и с помощью некоторых простых модификаций ее также можно подключить для управления током.

Схемы зарядных устройств идеально подходят для этой ИС, и мы собираемся изучить один из примеров схем для создания 12-вольтовой схемы автоматического зарядного устройства с использованием ИС LM338.

Глядя на принципиальную схему, мы видим, что вся схема подключена к микросхеме LM301, которая формирует схему управления для выполнения действий отключения.

IC LM338 сконфигурирован как регулятор тока и как модуль автоматического выключателя.

Использование LM338 в качестве регулятора и операционного усилителя в качестве компаратора

Всю операцию можно проанализировать по следующим пунктам: IC LM 301 подключен как компаратор, а его неинвертирующий вход привязан к фиксированной опорной точке, полученной от делителя потенциала. сеть, состоящая из R2 и R3.

Потенциал, полученный от соединения R3 и R4, используется для установки выходного напряжения IC LM338 на уровень, который немного превышает требуемое напряжение зарядки, примерно до 14 вольт.

Это напряжение подается на аккумулятор под зарядкой через резистор R6, который здесь включен в виде датчика тока.

Резистор 500 Ом, подключенный между входным и выходным контактами микросхемы LM338, гарантирует, что даже после автоматического выключения цепи батарея постоянно подзаряжается до тех пор, пока она остается подключенной к выходу схемы.

Кнопка «Пуск» служит для запуска процесса зарядки после подключения частично разряженной батареи к выходу схемы.

R6 может быть выбран соответствующим образом для получения различных скоростей зарядки в зависимости от AH батареи.

Детали функционирования схемы (объяснение +ElectronLover)

» Как только подключенная батарея полностью заряжена, потенциал на инвертирующем входе операционного усилителя становится выше установленного напряжения на неинвертирующем входе ИС. Это мгновенно переключает выход операционного усилителя на низкий логический уровень».

По моему предположению:

  • В+ = VCC — 74мВ
  • V- = VCC — Icharging x R6
  • VCC= Напряжение на контакте 7 операционного усилителя.

Когда Батарея заряжается полностью Зарядка уменьшается. V- становится больше, чем V+, выход операционного усилителя становится низким, включение PNP и светодиода.

Кроме того,

R4 получает заземление через диод. R4 становится параллельным R1, уменьшая эффективное сопротивление между контактом ADJ LM338 и GND.

Vout(LM338) = 1,2+1,2 x Reff/(R2+R3), Reff — сопротивление контакта ADJ относительно GND.

Когда Reff уменьшается, выходной сигнал LM338 уменьшается и блокируется зарядка.

Схема цепи

6) Зарядное устройство 12 В с использованием ИС L200

Вам нужна схема зарядного устройства постоянного тока для безопасной зарядки аккумулятора? Пятая простая схема, представленная здесь с использованием IC L200, просто покажет вам, как построить блок зарядного устройства постоянного тока.

Важность постоянного тока

Зарядное устройство постоянного тока настоятельно рекомендуется с точки зрения обеспечения безопасности и длительного срока службы батареи. Используя IC L200, можно построить простое, но очень полезное и мощное зарядное устройство для автомобильных аккумуляторов, обеспечивающее постоянный выходной ток.

Я уже обсуждал много полезных схем зарядных устройств в своих предыдущих статьях, некоторые из них слишком точны, а некоторые намного проще по конструкции.

Хотя основные критерии, связанные с зарядкой аккумуляторов, в значительной степени зависят от типа аккумулятора, в основном это напряжение и ток, которые особенно нуждаются в соответствующих параметрах, чтобы обеспечить эффективную и безопасную зарядку любого аккумулятора.

В этой статье мы обсуждаем схему зарядного устройства, пригодного для зарядки автомобильных аккумуляторов, оснащенных визуальным индикатором обратной полярности и полного заряда.

Схема включает в себя универсальный, но не очень популярный регулятор напряжения IC L200 вместе с несколькими внешними дополнительными пассивными компонентами для формирования полноценной схемы зарядного устройства.

Давайте узнаем больше об этой схеме зарядного устройства постоянного тока.

Принципиальная схема с использованием L200 IC

Работа схемы

IC L200 обеспечивает хорошую стабилизацию напряжения и, следовательно, обеспечивает безопасную зарядку постоянным током, что необходимо для любого типа заряжаемых аккумуляторов.

Как видно из рисунка, входное питание подается от стандартной конфигурации трансформатора/моста, конденсатор C1 образует основной фильтрующий конденсатор, а C2 отвечает за заземление любого левого остаточного переменного тока.

Зарядное напряжение устанавливается регулировкой переменного резистора VR1, без подключенной к выходу нагрузки.

В схему включен индикатор обратной полярности с использованием светодиода LD1.

Как только подключенная батарея становится полностью заряженной, т. е. когда ее напряжение становится равным установленному напряжению, ИС ограничивает зарядный ток и предотвращает перезарядку батареи.

Вышеописанная ситуация также уменьшает положительное смещение T1 и создает разность потенциалов выше -0,6 В, так что он начинает проводить и включает LD2, показывая, что батарея полностью заряжена и может быть удалена из зарядного устройства.

Резисторы Rx и Ry являются токоограничивающими резисторами, необходимыми для фиксирования или определения максимального зарядного тока или скорости, с которой необходимо заряжать батарею. Рассчитывается по формуле:

I = 0,45(Rx+Ry)/Rx.Ry.

IC L200 может быть установлен на подходящем радиаторе для облегчения непрерывной зарядки аккумулятора; однако встроенная схема защиты ИС практически никогда не позволяет ИС выйти из строя. Обычно он включает в себя встроенную защиту от перегрева, защиты от короткого замыкания на выходе и защиты от перегрузки.

Диод D5 гарантирует, что микросхема не выйдет из строя в случае случайного подключения батареи с обратной полярностью на выходе.

Диод D7 включен для предотвращения разрядки подключенной батареи через микросхему в случае выключения системы без отсоединения батареи.

Вы можете довольно легко модифицировать эту схему зарядного устройства постоянного тока, чтобы сделать ее совместимой с зарядкой 6-вольтовой батареи, просто изменив значение нескольких резисторов. Пожалуйста, обратитесь к списку деталей, чтобы получить необходимую информацию.

Parts list
  • R1 = 1K
  • R2 =100E,
  • R3 = 47E,
  • R4 = 1K
  • R5 = 2K2,
  • VR1 = 1K,
  • D1—D4 AND D7 = 1N5408,
  • D5, D6 = 1N4148,
  • СВЕТОДИОДЫ = КРАСНЫЕ 5 мм, 9 шт.0036
  • C1 = 2200 мкФ/25 В,
  • C2 = 1 мкФ/25 В,
  • T1 = 8550,
  • IC1 = L200 (корпус TO-3) -12 Вольт FSD
  • TR1 = 0–24 В, ток = 1/10 Ач батареи

Как настроить цепь зарядного устройства CC

Схема настраивается следующим образом:

Подключить регулируемый источник питания к цепи.

Установите напряжение, близкое к верхнему пороговому уровню напряжения.

Отрегулируйте предустановку так, чтобы реле оставалось активированным при этом напряжении.

Теперь немного поднимите напряжение до верхнего порогового уровня и снова отрегулируйте предустановку так, чтобы реле просто сработало.

Схема настроена и может нормально использоваться, используя фиксированный вход 48 В для зарядки нужной батареи.

Запрос от одного из моих подписчиков:

Привет, Swagatam,

Я получил ваше электронное письмо с веб-сайта www.brighthub.com, где вы поделились своим опытом в отношении конструкции зарядного устройства.

Пожалуйста, у меня есть небольшая проблема, и я надеюсь, что вы могли бы мне помочь:

Я просто неспециалист и не очень разбираюсь в электронике.

Я использую инвертор мощностью 3000 Вт и недавно обнаружил, что он не заряжает аккумулятор (но инвертирует). У нас здесь не так много специалистов, и, опасаясь дальнейшего повреждения, я решил приобрести отдельное зарядное устройство для зарядки аккумулятора.

Мой вопрос: зарядное устройство, которое я получил, имеет выход 12 вольт 6 ампер, будет ли оно заряжать мою сухую батарею емкостью 200 Ач? Если да, то сколько времени потребуется для полной зарядки, а если нет, то какую емкость зарядного устройства я получу для этой цели? В прошлом у меня был опыт, когда зарядное устройство повредило мою батарею, и я не хочу рисковать в этот раз.

Большое спасибо.

Habu Maks

My Answer to Mr. Habu

Hi Habu,

Зарядный ток зарядного устройства в идеале должен составлять 1/10 Ач аккумулятора. Это означает, что для вашей батареи емкостью 200 Ач зарядное устройство должно быть рассчитано примерно на 20 ампер.
При такой скорости для полной зарядки аккумулятора потребуется от 10 до 12 часов.
При использовании зарядного устройства на 6 ампер зарядка аккумулятора может занять целую вечность, или просто процесс зарядки может не начаться.

Спасибо и С уважением.

7) Простая схема зарядного устройства 12 В с 4 светодиодными индикаторами

Схема автоматического зарядного устройства 12 В с управлением током и 4 светодиодными индикаторами описана в следующем посте. В конструкцию также входит 4-уровневый индикатор состояния зарядки с использованием светодиодов. Схема была запрошена мистером Денди.

Зарядное устройство с 4-х светодиодным индикатором состояния

Прошу вас изготовить схему автоматического зарядного устройства сотового телефона 5 Вольт и схему зарядного устройства аккумулятора 12 В (на схеме схема и первый трансформатор ТТ) автоматический / отключить с помощью индикатора батареи и

Светодиод горит красным цветом, поскольку индикатор заряжается (индикатор зарядки) с использованием IC LM 324, а

LM 317 и полной батареи с использованием зеленого светодиода и отключения электрического тока, когда батарея полностью заряжена.

Для цепи зарядного устройства сотового телефона 5 Вольт Я хочу иметь уровни следующих индикаторов:

0-25% батареи в зарядном устройстве с помощью красного светодиода. 25-50% с помощью синего светодиода (красный светодиод горит выход) 55-75% с использованием желтого светодиода (светодиод красный, синий перебои) 75-100% с использованием зеленого светодиода (светодиод красный, синий, желтый перебои) рядом с цепью зарядного устройства 12 В Я хочу использовать 5 светодиодов следующим образом :0–25 % с использованием красного светодиода 25–50 % с использованием оранжевого светодиода (красный светодиод гаснет) 50–75 % с использованием желтого светодиода (светодиод красный, оранжевый отключен) 75–100 % с использованием синего светодиода (светодиод красный, оранжевый, желтые перебои) более 100% с использованием зеленого светодиода (светодиод красный, оранжевый, желтый, синий перебои).

Я надеюсь, что вы, компоненты являются общими и доступными и сделали принципиальную схему выше как можно скорее, потому что мне действительно нужны детали схемы.

Надеюсь, вы поможете мне найти лучшее решение.

Конструкция

В требуемой конструкции используется 4-уровневый индикатор состояния, что можно увидеть ниже. доходит до батареи.

Переключатель SPDT можно использовать для выбора зарядки аккумулятора либо от сетевого адаптера, либо от возобновляемого источника энергии, такого как солнечная панель.

Схема цепи

ОБНОВЛЕНИЕ:

Следующая проверенная схема зарядного устройства 12 В была отправлена ​​​​компанией «Ali Solar» с просьбой поделиться ею в этом сообщении:

Схемы зарядного устройства Smart 12 В

Схема умного зарядного устройства на 12 В была разработана мной исключительно в ответ на запросы двух увлеченных читателей этого блога, мистера Винода и мистера Сэнди.

Давайте послушаем, что г-н Винод обсуждал со мной по электронной почте относительно создания схемы умного зарядного устройства:

8) Обсуждаем дизайн персонального зарядного устройства на 12 В

«Привет, Свагатам, меня зовут Винод Чандран. Я дубляж в малаяламской киноиндустрии, но я также энтузиаст электроники. Я постоянный посетитель вашего блога. Теперь мне нужна ваша помощь. Схему прилагаю к этому письму.

Красный светодиод в цепи должен светиться, когда батарея полностью заряжена, но он светится все время (моя батарея показывает только 12,6 В).

Еще одна проблема с банком 10k. нет никакой разницы, когда я поворачиваю горшок влево и вправо. . Поэтому я прошу вас либо исправить эти проблемы, либо помочь мне найти схему автоматического зарядного устройства, которая дает мне визуальное или звуковое оповещение, когда батарея полностью заряжена или разряжена.

Будучи любителем, я делал вещи из старых электронных приборов. Для зарядного устройства у меня есть некоторые компоненты. 1. Трансформер из старого vcd плеера. выход 22В, 12В, 3.3В.

И я не знаю, как измерить ампер. У моего цифрового мультиметра есть возможность проверить только 200 мА. У него есть порт на 10 А, но я не могу измерить с его помощью ампер (метр показывает «1»). Поэтому я предположил, что трансформатор выше 1 А и ниже 2 А с размером и требованиями vcd-плеера. 2. Еще один трансформатор -12-0-12 5А 3.

Еще один трансформатор — 12в 1А 4. Трансформатор от моего старого упса(Цифра 600exv). Вход этого трансформатора регулируется переменным током? 5. Пара LM 317 6. Аккумулятор SLA от старых ИБП- 12v 7Ah. (Сейчас у него зарядка 12,8в) 7. Аккумулятор SLA от старого инвертора 40w — 12v 7Ah. (зарядка 3.1v) Я забыл вам сказать одну вещь. После первой схемы зарядного устройства я сделал еще одну (эту тоже прикреплю). Это не автомат, но работает. И мне нужно измерить ампер этого зарядного устройства.

Для этой цели я погуглил программное обеспечение для моделирования анимированных схем, но пока не нашел его. Но я не могу нарисовать свою схему в этом инструменте. нет таких деталей, как LM317 и LM431 (регулируемый шунтирующий регулятор). нет даже потенциометра или светодиода.

Поэтому я прошу вас помочь мне найти инструмент визуального моделирования цепей. Надеюсь, вы мне поможете. с уважением

Привет, Винод, Красный светодиод не должен светиться все время, и при повороте потенциометра должно измениться> выходное напряжение без подключенной батареи.

Вы можете сделать следующее: > > Удалите резистор 1 кОм последовательно с потенциометром 10 кОм и соедините соответствующую клемму потенциометра напрямую с землей.

Подключите потенциометр 1 кОм к базе транзистора и земле (используйте центральную и любую другую клемму потенциометра).

Удалите все, что представлено на правой стороне батареи на схеме, я имею в виду реле и все такое….. Надеемся, что с приведенными выше изменениями вы сможете отрегулировать напряжение, а также отрегулировать потенциометр базового транзистора для заставляя светодиод светиться только после полной зарядки аккумулятора, при напряжении около 14 В.

Я не доверяю симуляторам и не использую их, я верю в практические тесты, которые являются лучшим методом проверки. Для батареи 12В 7,5 Ач используйте трансформатор 0-24В 2А, отрегулируйте выходное напряжение вышеуказанной схемы до 14,2В.

Отрегулируйте потенциометр базового транзистора так, чтобы светодиод только начинал светиться при напряжении 14 В. Выполняйте эти настройки без батареи, подключенной к выходу. Вторая схема тоже хороша, но не автоматическая… хотя и управляемая по току. Дайте мне знать, что вы думаете. Спасибо, Свагатам

Привет, Swagatam,
Прежде всего позвольте мне поблагодарить вас за быстрый ответ. Я попробую ваши предложения. перед этим мне нужно подтвердить изменения, которые вы упомянули. Я прикреплю изображение, содержащее ваши предложения. Поэтому, пожалуйста, подтвердите изменения в схеме. -винод чандран

Привет, Винод,

Это прекрасно.

Отрегулируйте предварительную настройку базы транзистора, пока светодиод не начнет тускло светиться при напряжении около 14 вольт без подключенной батареи.

С уважением.

Привет, Свагатам. Ваша идея великолепна. Зарядное устройство работает, и теперь горит один светодиод, указывающий на то, что идет зарядка. но как я могу настроить светодиодный индикатор полной зарядки. Когда я переворачиваю потенциометр на землю (что означает более низкое сопротивление), светодиод начинает светиться.

при высоком сопротивлении светодиод гаснет. После 4 часов зарядки моя батарея показывает 13,00 В. Но этот индикатор полного заряда сейчас не горит. Пожалуйста, помогите мне.

Простите, что снова вас беспокою. Последнее письмо было ошибкой. я не правильно понял ваше предложение. Поэтому, пожалуйста, игнорируйте это письмо.

Теперь я настраиваю потенциометр 10k на 14,3 В (довольно сложно настроить потенциометр, потому что небольшое отклонение приведет к большему выходному напряжению. ). И я настраиваю горшок 1k, чтобы он немного светился. Это зарядное устройство должно указывать на аккумулятор 14 В? Ведь дайте мне знать об опасности полного заряда аккумулятора.

Как вы сказали, все было в порядке, когда я тестировал схему на макетной плате. Но после впайки в печатную плату все происходит странно.

Красный светодиод не работает. напряжение зарядки в норме. В любом случае я прилагаю изображение, которое показывает текущее состояние цепи. Пожалуйста, помогите мне. В конце концов, позвольте мне спросить вас об одном. Не могли бы вы дать мне схему автоматического зарядного устройства с индикатором полного заряда батареи. ?.

Привет, свагатам. На самом деле я занимаюсь вашим автоматическим зарядным устройством с функцией гистерезиса. Я просто добавил несколько модификаций. я приложу схему с этим письмом. Пожалуйста, проверьте это. Если эта схема не в порядке, я могу подождать тебя до завтра.

Простой Схема #8

Я забыл спросить одну вещь. Мой трансформатор около 1 — 2 А. Я не знаю, что правильно. как я могу проверить с помощью моего мультиметра?.
Кроме того, если это трансформатор на 1 А или 2 А, как я могу уменьшить ток
до 700 мА.
с уважением

Привет, Винод, Схема в порядке, но не будет точной, доставит вам много хлопот > при настройке.

Трансформатор на 1 ампер будет обеспечивать 1 ампер при коротком замыкании (проверьте, подключив измерительные штыри к проводам питания в диапазоне 10 ампер и установив постоянный или переменный ток в зависимости от выходного сигнала).

Это означает, что максимальная мощность составляет 1 ампер при нулевом напряжении. Вы можете свободно использовать его с аккумулятором 7,5 Ач, он не нанесет никакого вреда, так как напряжение упадет до уровня напряжения аккумулятора при токе 700 мА, и аккумулятор будет безопасно заряжен. Но не забудьте отключить аккумулятор, когда напряжение достигнет 14 вольт.

В любом случае, в схему, которую я вам предоставлю, будет добавлено средство управления током, так что не о чем беспокоиться

С уважением.

Я дам вам идеальную и простую автоматическую схему, пожалуйста, подождите до завтра.

Привет, swagatam,
Надеюсь, вы поможете мне найти лучшее решение. Спасибо.
с уважением
vinod chandran

В то же время, другой активный последователь этого блога Mr. Sandy также запросил аналогичную схему смарт-зарядного устройства на 12 В через комментарии.

Итак, наконец, я спроектировал схему, которая, надеюсь, удовлетворит потребности мистера Винода и мистера Сэнди.

На следующем 9-м рисунке показана схема автоматического двухступенчатого зарядного устройства от 3 до 18 В, управляемого напряжением и током, с функцией зарядки в режиме ожидания.

Принципиальная схема № 9

Схема автоматического зарядного устройства

Свинцово-кислотная батарея — самая популярная. Хотя они очень большого размера. Но у них есть преимущество: дешево, легко купить. Если вам нужна долгая жизнь. Вам следует использовать приведенную ниже схему автоматического зарядного устройства.

Важность зарядки
Обычно при правильной зарядке эти типы аккумуляторов могут работать 3-4 года. Меня тошнит каждый раз, когда аккумулятор выходит из строя раньше положенного времени. Я не хочу, чтобы ты был таким, как я. Не делайте этого!

  • Зарядка от перегрева
    Важно, аккумулятор не любит горячий ! Ни в коем случае не используйте и не храните их в слишком теплом месте. ИЛИ Если во время использования может произойти короткое замыкание или использование сильного тока, они будут слишком горячими. Во время зарядки не происходит быстрой зарядки с большим током и высоким напряжением.
  • Только напряжение постоянного тока!
    Мы должны заряжать их только постоянным напряжением.
  • Зарядка от перенапряжения
    Обычно производитель аккумуляторов обычно печатает соответствующее напряжение.
    Мы должны использовать заряд постоянного напряжения.
    — максимальное напряжение батареи 12 В 14,8 В, в режиме ожидания 13,8 В
    — максимальное напряжение батареи 6 В 7,5 В, использование в режиме ожидания 6,8 В %. Например, для батареи 12В/7Ач начальный ток должен быть меньше 2А. Если мы используем 1А, батарея будет полностью заполнена примерно на 7 часов.
  • Нет длительного времени
    Кроме того, если вы заряжаете его слишком долго. Батарея тоже сильно греется. Таким образом, когда аккумулятор полностью заряжен, прекратите его зарядку.

Эти две схемы сделают вашу жизнь проще.

Схема простого автоматического зарядного устройства

Как это работает

Знакомство со стабилитроном

Как настроить и использовать

Зарядка высоким током0003

Мониторинг уровня заряда батареи

Как сделать и настроить

Похожие сообщения

Простая схема автоматического зарядного устройства

Это первая схема автоматического зарядного устройства. Мы используем концепцию схемы: не используя микросхемы и сложные устройства. Используйте существующие продукты, чтобы получить больше преимуществ.

Мы можем использовать эту схему для всех батарей. Просто нужно понимать только требования к зарядке аккумулятора.

  • Предназначен для аккумуляторов 12В. Но если вы уже понимаете принцип работы. Я считаю, что вы определенно можете адаптироваться к батарее 6V или другим.
  • Вы должны использовать входное напряжение 15 вольт или в 1,5 раза больше напряжения батареи.
  • Самое важное — Следует использовать ток зарядного устройства 10 % от тока батареи. Например, аккумулятор 2,5 Ач. Используйте зарядный ток 0,25А. На полную уходит 10-12 часов.

Как это работает

В первую очередь думаю «Когда… Зарядить? И когда остановиться?»

Обычно мы должны заряжать аккумулятор, если напряжение ниже 12,4 В. Затем напряжение батареи повышается и напряжение достигает максимума 14,4В. Это полный. Нам нужно отключить зарядный ток.

Во-вторых, нам нужно использовать схему компаратора.

Я часто использую IC-операционные усилители, такие как LM339, LM311, LM324, LM301. Но иногда мы не можем их купить.

И это наша работа только в простом стиле.

В начале мы изучаем основные принципы работы с электронными компонентами.

Познакомьтесь с стабилитроном

Мне нравится использовать диод, стабилитрон, которые оба являются клапанами для электрических токов. Поток будет течь в одну сторону. А вот стабилитрон подключен наоборот. Затем он блокирует ток до тех пор, пока напряжение не превысит определенный уровень.

Пытаюсь проверить их со стабилитроном на 12 вольт, через него будет течь ток при напряжении выше 12В.

Итак, я использую стабилитрон для обнаружения напряжения выше 13 В для управления системой остановки зарядного устройства.

Реле и тиристор отключения батареи

Затем я использую реле для управления током батареи. Из-за дешевизны и легкости в использовании.

Затем я использую SCR для использования в качестве переключателя быстрого управления.

Простое зарядное устройство с автоматическим отключением

Приходит посмотреть в цепи. Я использую его для батареи 12V 7AH и ниже. Значит зарядный ток 2А.

Поэтому я использую трансформатор 2А, 12В в нерегулируемом блоке питания. Под нагрузкой или во время зарядки от 13 В до 15 В постоянного тока.

Допустим, напряжение аккумулятора 12,4В. Реле не работает. Зарядный ток непрерывно протекает через батарею.

Пока напряжение аккумулятора не поднимется до 13,8В. Ток начинает течь через стабилитрон к Bias SCR1.

SCR1 работает. Затем также запускается повтор, потяните за соединение NO и C.

Итак, на батарею не поступает ток.

Как настроить и использовать

Вы можете посмотреть видео ниже Я тестирую его. Эти проекты всегда будут отключать батарею. Когда напряжение на нем падает на 13,6 В.

Затем светодиод LED2 (желтый) загорится ярко. При этом реле будет вытягиваться из контакта NC-C. Какой ток к аккумулятору и напряжение ниже.

Затем вы можете снова зарядить, нажав SW2 для сброса, перезарядить их снова.

Высокоточная зарядка

Если вы хотите зарядить сильноточную батарею. Например, аккумулятор на 45 Ач. Вы должны использовать ток менее 5А. И ток менее 15А.

Также необходимо использовать источник питания с высоким током. Компоненты внутри сильноточные. Например трансформатор 10А-15А, диоды невесты 25А, реле 20А и многое другое.

Я думаю, что эта схема не подходит для сильноточной батареи. Потому что это может привести к ошибке зарядки. Вам нужно использовать заряд постоянного напряжения в режиме PWM.

Автоматическое выключение зарядного устройства 12 В по мощности SCR

В приведенной выше схеме может возникнуть ошибка, и ее трудно настроить. Я предлагаю автоматическое сухое зарядное устройство с использованием SCR для 12-вольтовой батареи. Кроме того, он использует батарею 6V. Похоже на приведенную выше схему. Зенеровский диод и SCR являются основными частями. Но SCR работает вместо реле. SCR работает в импульсном постоянном токе на фильтрах с конденсатором.

Как работает эта схема

Как схема ниже. Начнем с того, что переменный ток 220 В будет поступать на трансформатор для преобразования в 15 вольт. Затем подайте мостовой диод к выпрямителю переменного тока в постоянный импульс 15 В. LED1 является индикатором питания схемы.

Начало работы SCR1. Поскольку 15V текут к R3, чтобы ограничить ток, чтобы уменьшиться и течь через диод D5.

Защищает от обратного напряжения до смещения на вывод G SCR1.

Когда SCR1 находится в проводящем состоянии, подайте напряжение 15 В через провод K на положительную клемму аккумулятора.

В идеале SCR1 будет проводить ток и останавливать ток попеременно очень быстро с частотой 100 Гц.

Так как напряжение 15В от мостового диода является двухполупериодным выпрямителем. Итак, выходная частота 50Гц+50Гц. Ток этой функции представляет собой непрерывную положительную половину синусоиды.

Чем отличается от напряжения с емкостным фильтром, который ровный как прямая.

Таким образом, SCR1 не проводит ток все время. При наличии положительного напряжения смещения на отведении G.

Поскольку форма сигнала напряжения представляет собой импульс постоянного тока, а не плавный.

Тиристор перестанет проводить ток. Если отключение не является положительным напряжением.

Затем положительный сигнал напряжения снова поступает на SCR1. Он снова начнет проводить ток, это было изменено с частотой 100 Гц.

Рекомендуется: Схема зарядного устройства для гелевых батарей

Контроль уровня заряда батареи

Прежде всего, положительное напряжение батареи проходит через резистор R2 для уменьшения тока. И, C1 будет фильтровать ток, чтобы сгладить.

Во-вторых, ток протекает через VR1 для деления напряжения вниз. Затем стабилитрон ZD1 пропускает перенапряжение на провод смещения G SCR2.

Мы настраиваем уровень VR1, чтобы установить полную батарею. До тех пор, пока напряжение на минусе ZD1 не превысит 6,8 В или около 7,3 В.

После этого ZD1 является потоком спада напряжения насыщения для питания вывода G SCR2. Это заставляет SCR2 проводить ток. By R4 является помощником для исключительно стабильной работы SCR2.

Когда SCR2 работает, вызывает отрицательное напряжение, ведущее от K к A. Это приводит к свечению LED2.

И в то же время SCR1 перестанет проводить ток.


Распиновка ТО-220 и ТО-92 тиристоров

Так как на вывод G тиристора1 подается отрицательное напряжение от тиристора2. В случае батареи с более низким напряжением напряжение на минусе ZD1 ниже 6,8 В.

Из-за этого на вывод G SCR2 не подается положительное напряжение. Но через R4 он может получить только отрицательное напряжение, в результате SCR2 не проводит ток.

Список деталей
0,5 Вт резисторов5%
R1, R5: 2K
R2: 1,5K
R3: 560 Ом
R4: 10K
VR1: 10K Potentiometer
C1: 100V 25V Electrytrycitor
C1: 100V 25V Electrytcitor
C1: 100V 25V -Electrytcitor
. EC103 или 2N5060SCR
ZD1: 6,8 В 1 Вт
D1-D4: 1N5404_Diode
D5: 1N4002_Diode
LED1, LED2: 5M LED по вашему желанию
Печатные платы и др. и т.п.

Как сделать и установить

  • После того, как вы подготовите все компоненты. Затем мы успешно припаяли его к печатной плате, как показано на следующем рисунке. Например, У устройства есть плюс — минус. У них правильная полярность?


Схема расположения компонентов зарядного устройства для сухих батарей


Точка пайки зарядного устройства для сухих батарей


Полная сборка всех деталей на печатной плате


Аккумулятор полностью 12 В 2,5 А

  • В целях безопасности, первый шаг, найти полное напряжение аккумулятора и подключить его к цепи, соблюдая полярность.
  • Применить AC220V. Затем отрегулируйте VR1 по часовой стрелке, пока LED2 не погаснет.
  • Для медленного вращения VR1 по часовой стрелке, пока не загорится светодиод 2, затем немедленно остановите. Не делайте слишком много вращения.
  • Принцип LED2 загорается при напряжении аккумулятора до полного. Итак, в первый раз аккумулятор должен быть действительно полным.

Примечание:
К сожалению, я не могу показать вам разводку печатной платы. Но вы можете использовать перфорированную доску .

Посмотрите видео ниже, чтобы лучше понять этот проект.

Модификация схемы

Эта схема может изменять напряжение батареи 3 размеров 6В, 9В, 12В. Мы можем изменить каждую часть значения как аккуратно заряженную батарею.

В обычной схеме мы используем аккумулятор на 12 В. Например, обратите внимание на батарею шасси, указанную как 12V 20AH. Смысл в том, что это может питать токи 20 ампер в час.

Когда вы знаете, что напряжение на аккумуляторе заряжено, теперь мне нужно выбрать трансформатор, который будет использоваться. Используемые трансформаторы тока могут быть выбраны из 3A.

  • Аккумулятор 6 В ; Напряжение выходного трансформатора: 9В;—Напряжение стабилитронов: 3,3В ; —R3 и R5: 1K
  • Батарея 9В ; Напряжение выходного трансформатора: 12 В; — напряжение стабилитронов: 4,7 В ; —R3 и R5: 1,5K
  • Аккумулятор 12 В ; Выходное напряжение трансформатора:  15В;— Стабилитроны напряжение: 6,8В ; —Р3 и R5: 2K

Нажмите, чтобы посмотреть больше:


6 В или 12 В ведущего кислотного аккумулятора
Легкие цепь легко для вас

Apichet Garaipoom

I Love Electronics. Я изучил их, создавая проекты «Электронные схемы» и «Простые», чтобы учить своих детей. Самое главное, я надеюсь, что наш опыт на этом сайте будет вам полезен.

Спасибо за поддержку. 🙂

Похожие посты

ПОЛУЧИТЬ ОБНОВЛЕНИЕ ПО ЭЛЕКТРОННОЙ ПОЧТЕ

Я всегда стараюсь, чтобы электроника Обучение было легким .

Зарядное устройство для автомобильного аккумулятора

Зарядное устройство для автомобильного аккумулятора
Главная страница > Схемы > Источники питания > Автомобильное зарядное устройство

Поиск:

Автор просмотров просмотров сегодня Ранг Комментарии
874 961 4 159
Это зарядное устройство быстро и легко зарядит любой свинцово-кислотный аккумулятор. Зарядное устройство обеспечивает полный ток до тех пор, пока ток, потребляемый аккумулятором, не упадет до 150 мА. В это время подается более низкое напряжение, чтобы завершить работу и предотвратить перезарядку. Когда батарея полностью заряжена, схема выключается и загорается светодиод, сообщая вам, что цикл завершен.

Схема

Часть
Общее кол-во
Описание
Замена
R1 1 500 Ом 1/4 Вт Резистор
R2 1 3K 1/4 W Resistor
R3 1 1K 1/4 W Resistor
R4 1 15 Ohm 1/ 4 W Resistor
R5 1 230 Ohm 1/4 W Resistor
R6 1 15K 1/4 W Resistor
R7 1 0. 2 Ohm 10 W Resistor
C1 1 0.1uF 25V Ceramic Capacitor
C2 1 1uF 25V Electrolytic Capacitor
C3 1 1000pF 25V Ceramic Capacitor
D1 1 1N457 Diode
Q1 1 2N2905 PNP Transistor
U1 1 LM350 Regulator
U2 1 LM301A Op Amp
S1 1 Normally Open Push Button Switch
РАЗНОЕ 1 Провод, плата, радиатор для U1, корпус, клеммы или зажимы типа «крокодил» для выхода
  1. Схема должна питаться от источника питания, поэтому на схеме нет трансформатора, выпрямителя или фильтрующих конденсаторов. Нет причин, по которым вы не можете добавить их.
  2. Для U1 потребуется радиатор.
  3. Чтобы использовать схему, подключите ее к источнику питания. Затем подключите заряжаемую батарею к выходным клеммам. Все, что вам нужно сделать сейчас, это нажать S1 (переключатель «Старт») и дождаться завершения схемы.
  4. Если вы хотите использовать зарядное устройство без внешнего источника питания, используйте следующую схему.

    Часть
    Общее кол-во
    Описание
    Замена
    C1 1 Электролитический конденсатор 6800 мкФ 25 В
    T1 1 3A 15V Transformer
    BR1 1 5A 50V Bridge Rectifier 10A 50V Bridge Rectifier
    S1 1 5A SPST Switch
    F1 1 Предохранитель 4 А 250 В
  5. При первом использовании схемы следует время от времени проверять ее, чтобы убедиться, что она работает правильно и батарея не перезаряжается.

Связанные цепи

Преобразователь 6 В в 12 В, портативный адаптер для проигрывателя компакт-дисков для автомобиля, зарядное устройство для автомобильного аккумулятора, автоматическое зарядное устройство для свинцово-кислотных аккумуляторов 12 В, полупроводниковая катушка Тесла / высоковольтный генератор, инвертор 12 В постоянного тока в 120 В переменного тока, источник питания лазера, источник питания, сильноточный источник питания, двойной Полярный источник питания, высоковольтный сильноточный источник питания, бестрансформаторный источник питания, источник постоянного напряжения, инвертор напряжения, инвертор напряжения II, автоматический выключатель питания с определением нагрузки, преобразователь постоянного тока 12 В в 24 В, полупроводниковая катушка Тесла

Комментарии

анонимно
Зарядное устройство для автомобильного аккумулятора
Воскресенье, 12 апреля 2015 г. 11:03:44
Я новичок, но я собрал это зарядное устройство, и оно работает так, как должно. Я собираюсь подключить его к настольному вентилятору, который я преобразовал в генератор, и заряжать аккумулятор в ветреные дни. Отличный сайт.
Ричард
Зарядное устройство для автомобильного аккумулятора
Пятница, 21 октября 2011 г. 8:11:48
от источника питания плюс и минус питания соединяется с чем в зарядном устройстве? у него только один «IN» куда идет минус питания? земля идет на трансформатор правильно?
leochbattery
Зарядное устройство для автомобильного аккумулятора
Пятница, 16 сентября 2011 г. 5:10:16
Я просто больше разбираюсь в автомобильных аккумуляторах. Не перезаряжайте аккумулятор, иначе он повредится.
анонимно
Зарядное устройство для автомобильного аккумулятора
Четверг, 1 сентября 2011 г. 6:59:10
Могу ли я использовать 8-амперный стабилизатор напряжения 13,8 В в качестве источника питания для автомобильного зарядного устройства?
Ли
Зарядное устройство для автомобильного аккумулятора
9 февраля 2011 г. 15:17:59
каким должно быть выходное напряжение зарядного устройства? я получил около 15 В в соответствии с multisim. спасибо
анонимно
Зарядное устройство для автомобильного аккумулятора
Четверг, 28 октября 2010 г. 8:41:28
привет, когда вы говорите «почти любой свинцово-кислотный аккумулятор», вы имеете в виду, что он также будет заряжать 6 вольт?
шоаиб
Зарядное устройство для автомобильного аккумулятора
Воскресенье, 10 октября 2010 г. 7:04:10
Могу ли я использовать любой другой диод вместо D1 IN457? Помогите мне, пожалуйста….
Макс.
Зарядное устройство для автомобильного аккумулятора
Пятница, 25 июня 2010 г. 13:15:25
Отличная схема! Буду использовать как зарядное устройство для аккумуляторов. Спасибо
сиамак
Зарядное устройство для автомобильного аккумулятора
Воскресенье, 20 июня 2010 г. 23:41:25
Схема, которую вы предложили, имеет вход 18 В, я думаю, что это должно быть напряжение постоянного тока, и, как вы знаете, трансформатор переменного тока 12 В после прохождения через диодный мост дает 18 В постоянного тока (корневой квадрат 12×2). поэтому я думаю, что для этой схемы достаточно трансформатора на 12 В переменного тока с током 3 ампера, все в порядке?
Спудж
Зарядное устройство для автомобильного аккумулятора
Пятница, 28 мая 2010 г. 8:38:17
Хорошая трасса. что нужно изменить, если я хочу, чтобы он быстро заряжал аккумулятор на 140 ампер. Мне нужно зарядное устройство от 10 до 20 ампер, по крайней мере. Для моих ИБП у нас здесь 4-5 часов отключения электроэнергии каждый день.
В настоящее время показаны последние 10 комментариев. Показать все комментарии.

Вернуться на страницу цепей | напишите мне | Поиск

Схемы зарядного устройства | CircuitDiagram.Org

Схема контроля батареи

Вот схема контроля батареи, которую можно использовать для контроля напряжения 12-вольтовых свинцово-кислотных аккумуляторов, таких как автомобильные аккумуляторы. Схема построена на микросхеме LM3914…

Автомобильное зарядное устройство USB

Это проект схемы автомобильного зарядного устройства mini USB. Схема может заряжать USB-устройства с автомобильным аккумулятором…

Схема автоматического зарядного устройства для NiMH аккумуляторов

Схема полностью автоматического зарядного устройства для NiMH аккумуляторов с использованием положительного встроенного регулятора напряжения IC 7805, который обеспечивает постоянный ток для зарядки аккумуляторов…

Схема зарядного устройства для нескольких никель-кадмиевых и никель-металлгидридных аккумуляторов

Очень интересная и полезная схема зарядного устройства для нескольких никель-кадмиевых и никель-металлгидридных аккумуляторов, которая может заряжать аккумуляторы многих электронных устройств, например, радио, mp3-плееров, сотовых телефонов…

Зарядное устройство USB

Это схема портативного зарядного устройства USB с батарейным питанием. Эта схема может заряжать ваши карманные компьютеры, айподы, MP3-плееры и любые устройства, которые подключаются к компьютеру через USB для зарядки…

Схема зарядного устройства никель-кадмиевых аккумуляторов

Это схема зарядного устройства никель-кадмиевых аккумуляторов. Эта схема может заряжать аккумуляторную батарею 12V nicd. Но вы также можете заряжать аккумуляторы на 6 В и 9 В…

Схема зарядного устройства для свинцово-кислотных аккумуляторов

Схема зарядного устройства для свинцово-кислотных аккумуляторов с использованием знаменитой микросхемы LM 317. Схема обеспечивает правильное напряжение для зарядки герметичных свинцово-кислотных аккумуляторов на 12 В или 12 В. Аккумулятор SLA…

Цепь зарядного устройства солнечной батареи

Вот схема зарядного устройства солнечной батареи, которое может заряжать 12-вольтовые батареи SLA. Эта схема зарядного устройства солнечной батареи имеет функцию автоматического отключения, поэтому она автоматически прекращает зарядку, когда батарея становится полностью заряженной…

Схема зарядного устройства ионно-литиевой батареи

Это схема простого зарядного устройства для ионно-литиевой батареи с одной ячейкой. В этой схеме зарядного устройства для ионно-литиевых аккумуляторов используется микросхема стабилизатора LP2931. ..

Зарядное устройство для автомобильных аккумуляторов

Это принципиальная схема полностью автоматического зарядного устройства на 12 В для зарядки аккумуляторов автомобилей и т. д. Эта схема рассчитана на максимальный ток зарядки 2 ампера… , 4,8 В и 9,6 В NiCd аккумуляторы. Микросхема LM317T, показанная на этой схеме зарядного устройства для никель-кадмиевых аккумуляторов, используется для регулирования…

Цепь зарядного устройства для аккумуляторов 6 В, 4,5 Ач

Вот схема зарядного устройства для аккумуляторов, 6 В, 4,5 Ач, которая способна заряжать свинцово-кислотные аккумуляторы, 6 В, 4,5 Ач. Схема очень проста и использует всего несколько компонентов…

Схема резервного питания от батареи 6 В

Показанный здесь проект представляет собой схему резервного питания от батареи 6 В. Схема проста в сборке и работает как мини-ИБП для 6-вольтовых устройств.

Зарядное устройство для щелочных батарей

Хорошо спроектированная схема зарядного устройства для щелочных батарей. Интересной особенностью этой схемы является то, что в ней используется светодиод, который будет мигать, показывая заряд батареи, когда вы подключаете полностью разряженную батарею, светодиод мигает быстрее, но когда начинается процесс зарядки батареи, скорость мигания светодиода будет медленно уменьшаться и полностью прекратится. когда батарея будет полностью заряжена.

Преобразователь постоянного тока в постоянный 1,5 В

Это схема преобразователя постоянного тока в постоянный, это универсальная схема, которую можно использовать для многих целей на этой схеме. LT1073 используется для преобразования 1,5 В в 5 В, напряжение можно снимать от любого размера 1,5 вольтовой батарейки например АА или ААА.

Зарядное устройство для одноэлементных литий-ионных аккумуляторов 1,5 А

Миниатюрная схема зарядного устройства для литий-ионных аккумуляторов с малым падением напряжения, использующая LTC1731.

Солнечное зарядное устройство для батарей типа AA

Полезная схема солнечного зарядного устройства, предназначенная для зарядки батарей типа AA или AAA. Наилучшая мощность зарядки достигается при размещении схемы под прямыми солнечными лучами. Эта схема также может быть использована для питания любого оборудования, такого как радиоприемник, дисковый манипулятор или пальма и т. д., в котором используются батареи типа AA или AAA.

Цепь резервного аккумулятора 9 В

Эта цепь резервного аккумулятора 9 В будет работать как мини-ИБП. Схема мгновенно преобразуется в питание от батареи, если входное напряжение отсутствует…

Самодельный телефон на солнечной батарее или зарядное устройство USB

Вот схема простого самодельного телефона на солнечной батарее или зарядного устройства USB. Эта схема зарядного устройства USB на солнечной батарее может использоваться для зарядки…

Простой монитор батареи

Вот проект простой схемы монитора батареи. Схема будет контролировать напряжение 12 и 9V батарей и активировать светодиодный индикатор, когда уровень заряда батарей будет…

Таймер автоматической зарядки батарей

Это проект универсальной схемы таймера автоматической зарядки батарей. Схема способна заряжать многие типы аккумуляторов от 5 до 12 вольт…

Монитор уровня заряда батареи с использованием микросхемы TL071

На рисунке ниже показан очень полезный проект монитора уровня заряда батарей с использованием микросхемы TL071. Схема проста и удобна в сборке и использовании…

Отключение или отключение при низком напряжении батареи

Вот очень полезный проект схемы отключения или отключения при низком напряжении батареи. Аккумуляторы обеспечивают очень хорошую производительность и срок службы, если мы позаботимся о…

Простой индикатор состояния батареи 12 В

Это очень полезный проект простой схемы индикатора состояния батареи 12 В. Схема будет показывать уровень напряжения батареи 12 В с помощью четырех светодиодов…

Аварийный сигнал низкого напряжения батареи

Чтобы продлить срок службы батарей, необходимо заботиться о них, одним из основных факторов, ослабляющих аккумуляторы, является глубокая разрядка. их…

Автоматическое зарядное устройство 12В, 9В, 6В

В этой статье описывается очень простая схема автоматического зарядного устройства 12, 9В, 6В. Схема может быть настроена для зарядки аккумуляторов разного напряжения…

Зарядное устройство для аккумуляторов 12В и 6В с автоматическим отключением

Вот очень простая схема автоматического зарядного устройства для аккумуляторов 12В и 6В с реле автоматического отключения. Термин «автоматическое отключение» означает, что цепь автоматически…0003

Мы часто нуждаемся в автоматическом ИБП (источник бесперебойного питания) или в цепи резервного питания для наших проектов 5В, 6В и 9В. Итак, здесь мы разработали хороший…

Сделай сам аккумулятор для сотового телефона, MP3, iPod, iPad

Этот сделай сам аккумулятор для сотового телефона можно использовать в качестве резервного зарядного устройства для мобильных телефонов и других устройств, например MP3-плееров, iPad, iPod и любое устройство, которое. ..

Сотовый телефон для экстренной помощи / Зарядное устройство для мобильных устройств

Очень полезный проект простого сотового телефона или зарядного устройства для мобильных телефонов. Схема также может использоваться для зарядки других устройств, для зарядки которых требуется входное напряжение 5 В…

Источник резервного питания от батареи 12 В

Проект простой автоматической схемы резервного питания от батареи 12 В. Схема автоматически переключит нагрузку на батарею при отсутствии сетевого питания…

555 Индикатор низкого заряда батареи для 12-вольтовых батарей

На рисунке ниже показан очень простой и полезный проект индикатора низкого напряжения для 12-вольтовых батарей с использованием микросхема таймера 555. Схема покажет, активировав светодиод…

555 Индикатор низкого заряда батареи Для батарей 6 В

Вот очень простой и легкий проект индикатора низкого заряда батареи 555 для 6В батарей. Каждый раз, когда батарея полностью разряжается, она теряет часть своей емкости из-за. ..

Отключение при низком заряде батареи для 6-вольтовых батарей с использованием микросхемы 555

Вот очень простой и легкий проект индикатора низкого заряда батареи 555 для 6-вольтовых батарей. Схема автоматически отключит аккумулятор от нагрузки, когда напряжение…

555 Универсальное автоматическое зарядное устройство

Схема может быть настроена для автоматической зарядки любого типа аккумуляторной батареи От 6В до 24В и обеспечивает максимальный ток 10А…

Отключение при низком заряде батареи Для 12-вольтовых батарей с использованием 555 IC

Схема может быть с 12-вольтовыми батареями, размещенными в любом месте, например, солнечными электростанциями, ИБП и т. д. Она может использоваться с любыми типами батарей, такими как герметичные свинцово-кислотные, свинцово-кислотные. ..

Контроль низкого уровня заряда батареи

Эта простая двухступенчатая схема контроля низкого уровня заряда аккумулятора может использоваться с различными батареями от 6В до 12В. Схема довольно проста в сборке и имеет низкую стоимость…

4 Светодиодный монитор батареи с использованием двух микросхем LM358

Простой недорогой и точный монитор напряжения батареи с 4 светодиодами, использующий две рабочие микросхемы lm358…

Интеллектуальное универсальное автоматическое зарядное устройство

Это интеллектуальное зарядное устройство позаботится о вашей аккумуляторной батарее и автоматически начнет зарядку, когда напряжение батареи падает…

LM324 Монитор батареи

Качественный 4-х светодиодный монитор батареи LM324, цепь. Схема универсальна и может быть использована для аккумуляторов любого типа и напряжения…

Монитор батареи с использованием LM339 IC

Вот проект схемы контроля батареи с использованием LM339 IC. Схема может использоваться для контроля любого типа аккумуляторов от 6В до 12В…

Монитор автомобильного аккумулятора с функцией отключения при низком заряде аккумулятора

На рисунке ниже показан проект монитора автомобильного аккумулятора с функцией отключения при низком заряде аккумулятора. Схема может использоваться с любым транспортным средством…

8-светодиодный монитор батареи с использованием LM324

Это проект недорогого 8-светодиодного монитора батареи с использованием LM324 IC. Схема может использоваться для контроля различных напряжений и типов батарей. Он использует два LM324…

USB-зарядное устройство для велосипедной динамо-машины

Выход динамо-машины для велосипеда можно использовать для питания различных устройств, в этой статье мы обсуждаем схему USB-зарядного устройства для велосипеда своими руками… очень интересный и полезный проект автоматической велосипедной динамо-фары и схемы зарядного устройства…

Ранний детектор отказа автомобильного аккумулятора

Эта схема обеспечивает раннее предупреждение или индикацию отказа вашего автомобильного аккумулятора путем включения зуммера на несколько секунд. , так что вы можете понять, что батарея сейчас…

Сигнал полной зарядки батареи

Вот очень полезный проект схемы сигнализации полной зарядки батареи. Схема может использоваться с различными типами аккумуляторов с разным напряжением…

Аварийный сигнал высокого уровня заряда батареи Для нескольких аккумуляторов

На рисунке показана схема сигнализации индикатора высокого уровня заряда аккумулятора, схема может быть настроена для контроля любого типа аккумулятора от 6В до 24В. Он подаст звуковой сигнал…

Резервный аккумулятор для нескольких устройств

Резервный аккумулятор необходим в ситуациях, когда требуется непрерывная работа оборудования без отключения во время отключения электроэнергии…

Автоматическое зарядное устройство для солнечных батарей

Солнечные панели являются хорошим источником бесплатной энергии, солнечные системы обычно используются для заряжать 12-вольтовые аккумуляторы с высоким ампером, в некоторые дни аккумулятор заряжается целый день…

Зарядное устройство для солнечных батарей на основе транзисторов с автоматическим отключением

Это проект простого зарядного устройства для солнечных батарей на основе транзисторов с функцией автоматического отключения, которое зарядите аккумулятор от солнечной панели и отключите его, когда он полностью заполнится.

Leave a Comment

Ваш адрес email не будет опубликован. Обязательные поля помечены *