Как работает карбюраторный двигатель: Работа карбюратора ДВС и его устройство
Работа карбюратора ДВС и его устройство
Карбюраторный двигатель — один из типов двигателя внутреннего сгорания с внешним смесеобразованием.
В карбюраторном двигателе топливно-воздушная смесь, поступающая по выпускному коллектору в цилиндры двигателя, приготавливается в специальном приборе — карбюраторе. Также карбюраторные двигатели разделяются на двигатели без наддува или атмосферные, у которых впуск воздуха или горючей смеси осуществляется за счет разряжения в цилиндре при всасывающем ходе поршня; двигатели с наддувом, у которых впуск воздуха или горючей смеси в рабочий цилиндр происходит под давлением, создаваемым турбокомпрессором, с целью увеличения заряда воздуха и получения повышенной мощности и КПД двигателя;
В качестве топлива для карбюраторного двигателя в разное время применялись спирт, керосин, лигроин, бензин. Наибольшее распространение получили бензиновые карбюраторные двигатели.
Карбюратор— устройство в системе питания карбюраторных двигателей внутреннего сгорания, предназначенное для смешивания бензина и воздуха, создания горючей смеси и регулирования её расхода.
Простейший карбюратор состоит из четырёх основных элементов: поплавковой камеры (10) с поплавком (3), жиклёра (9) с распылителем (7), диффузора (6) и дроссельной заслонки (5).
Топливо по трубке (1) поступает из бака в поплавковую камеру (10). В поплавковой камере плавает пустотелый, обычно латунный поплавок (3), на который опирается запорная игла (2). Когда уровень топлива в поплавковой камере достигнет необходимой высоты, поплавок всплывёт настолько, что заставит запорную иглу перекрыть трубку (1), прекращая подачу топлива в поплавковую камеру. По мере расходования топлива его уровень в поплавковой камере понижается, поплавок опускается, и запорная игла снова открывает подачу топлива, таким образом в поплавковой камере поддерживается постоянный уровень топлива, что очень важно для правильной дозировки подачи топлива.
Из поплавковой камеры топливо поступает через жиклёр (9) в распылитель (7). Количество топлива, вытекающего из распылителя (7), зависит при прочих равных условиях от размеров и формы жиклёра.
При движении поршня в такте впуска давление в цилиндре снижается. При этом наружный воздух засасывается в цилиндр через карбюратор и впускной трубопровод, проходя через воздушную трубу (8) карбюратора, в которой находится диффузор (6). В самой узкой части диффузора помещается конец распылителя. В сужающейся части диффузора скорость потока воздуха увеличивается, а давление воздуха уменьшается.
Благодаря отверстию (4) в поплавковой камере поддерживается атмосферное давление, в результате под влиянием разности давлений происходит истечение топлива из распылителя. Топливо, вытекающее из распылителя, раздробляется струями воздуха, распыляется, частично испаряется и, перемешиваясь с воздухом, образует горючую смесь. Как правило, вместо одного диффузора используется двойной или даже тройной диффузор. Дополнительные диффузоры расположены концентрически в главном диффузоре и имеют небольшие размеры.
Количество горючей смеси, поступающей в цилиндры двигателя, а следовательно, и мощность двигателя регулируется дроссельной заслонкой (5), которая обычно приводится в движение педалью акселератора (или ручным приводом у мотоциклов и некоторых автомобилей).
Управление карбюратором
Обычно работой карбюратора управляет водитель автомобиля. На некоторых моделях карбюраторов использовались дополнительные системы, частично автоматизировавшие управление им.
Для управления дроссельной заслонкой на автомобилях обычно используется педаль газа. Она может приводить её в движение при помощи системы тяг или тросового привода. Тяги в целом надёжнее, но конструкция привода получается сложнее и ограничивает возможности конструктора по компоновке подкапотного пространства. Привод тягами широко использовался в прежние годы, но начиная с 1970-х годов получила распространение система с металлическим тросиком. Системы с пневмо- или электромеханическим приводом распространения на карбюраторных двигателях не получили.
На старых автомобилях часто предусматривалась двойная система привода дроссельной заслонки карбюратора: от руки, рычажком или вытяжной рукояткой («постоянный газ»), и от ноги— педалью. Ручное и ножное управления связывалось между собой так, что при нажатии на педаль рукоятка ручного управления остаётся неподвижной, а при её вытягивании педаль опускается. Дальнейшее открытие дросселя можно было производить педалью. При отпускании педали дроссель остаётся в положении, установленном ручным управлением. Например, на «Волге» ГАЗ-21 на панели приборов справа от радиоприёмника была расположена рукоятка ручного управления дроссельной заслонкой, дублирующая педаль газа. Вытянув её, можно было добиться устойчивой работы холодного двигателя без использования воздушной заслонки, или использовать для установления «постоянного газа».
На мотоциклах и некотором числе автомобилей применяется ручное управление дросселем, осуществляемое специальной рукояткой на руле через тросик.
Воздушная заслонка может иметь механический или автоматический привод. В первом случае её закрывает водитель при помощи рукоятки, размещённой обычно на панели приборов. Автоматический привод широко применялся за границей, а в практике отечественного автопрома распространения практически не получил ввиду низкой надёжности, недолговечности и ненадёжной работы при характерных для климата большей части территории СССР/России больших перепадах температур. В этом случае воздушную заслонку закрывал биметаллический или церезиновый термоэлемент, обогреваемый жидкостью из системы охлаждения. По мере прогрева двигателя, термоэлемент нагревался, расширялся и открывал воздушную заслонку. В иных системах использовался электромеханический привод с датчиком температуры.
Очень широко распространён полуавтоматический привод воздушной заслонки. В этом случае она закрывается водителем вручную, а после пуска двигателя автоматически приоткрывается диафрагмой, работающей от возникающего во впускном коллекторе двигателя разрежения. Это предотвращало возможную остановку двигателя из-за переобогащения рабочей смеси и несколько снижало расход топлива на прогрев. Пусковую диафрагму имели практически все отечественные карбюраторы, разработанные после начала 1960-х годов. До этого некоторые модели использовали менее совершенный кулачковый механизм, немного приоткрывающий дроссельную заслонку при закрывании воздушной.
Регулировки карбюратора
Карбюратор— устройство, имеющее минимум регулировок, но требующее исправной работы узлов и механизмов. Работоспособность карбюратора и его техническое состояние существенно влияют на работу двигателя. Нарушение регулировки карбюратора приводит к ухудшению экономичности, приёмистости двигателя, а также к увеличению токсичности отработавших газов.
Доступные регулировки самого карбюратора:
- «Винт количества»— обороты в режиме холостого хода
- «Винт качества» — обогащённость топливо воздушной смеси (и, как следствие, содержание токсичного угарного газа в выхлопных газах) в режиме холостого хода.
В процессе эксплуатации необходимо проверять и восстанавливать работоспособность следующих узлов:
- работа клапана (герметичность) экономайзера и системы холостого хода
- работа ускорительного насоса (задержка срабатывания, количество и время впрыска топлива, направленность топливного распылителя)
- плавность работы, свободный ход, возвращение пружиной и необходимый уровень приоткрытия закрытой ДЗ
- работу системы холодного запуска (закрытие воздушной, и приоткрытие дроссельной и воздушной заслонок)
- работу устройства открытия второй ДЗ (если имеется)
- работу поплавкового механизма (уровень топлива в поплавковой камере, герметичность запорного клапана, отсутствие дефектов поплавка, и т.
- работу эмульсионных колодцев и распылителей, пропускная способность жиклёров
- отсутствие неучтённых подсосов воздуха
Так же на работу карбюратора оказывают своё влияние:
- механизмы управления карбюратором
- устройство подачи воздуха (воздушный фильтр, система подогрева воздуха в холодное время года)
- система подачи топлива (бензонасос, бензофильтры, заборник, топливные магистрали, вентиляция бака)
- система вентиляции картера двигателя
- сливная трубка избытка топлива, впускного коллектора
- герметичность впускного тракта после карбюратора
- негерметичность/неисправность клапанного механизма
- качество и состав топлива
Горючая смесь для карбюраторного двигателя
Горючая смесь для карбюраторного двигателя [c.60]Процесс впуска четырехтактного двигателя (рис. 3.3, а см. вклейку) начинается с момента начала движения поршня 5 вниз. К этому моменту впускной клапан 1 уже открыт, и горючая смесь для карбюраторного двигателя или воздух для дизеля поступает в цилиндр 4 через канал, выполненный в его головке 3. Открывается впускной клапан еще до прихода поршня в крайнее верхнее положение (в. м. т.), что для двигателя УД-15, например, соответствует 10 6° поворота коленчатого вала 9.
[c.67]
Для работы карбюраторного двигателя в его цилиндры подается смесь паров и мельчайших капелек жидкого горючего с воздухом, называемая горючей смесью. В качестве горючего для карбюраторных двигателей применяют бензин— быстро испаряющуюся на воздухе и легко воспламеняющуюся светлую жидкость. Основными свойствами бензина являются испаряемость, теплотворность и антидетонационная стойкость.
При пуске автомобильного двигателя его коленчатому валу необходимо сообщить определенную частоту вращения, при которой в карбюраторе образуется горючая смесь надлежащего состава, затем происходит наполнение цилиндров смесью, сжатие ее и воспламенение. Для карбюраторного двигателя эта частота вращения коленчатого вала составляет 50-100 об/мин, а для дизеля 120 — 200 об/мин. Автомобильные двигатели можно пускать от руки и электрическим стартером.
[c.178]
Простейший карбюратор может приготовлять смесь необходимого состава только для одного скоростного или нагрузочного режима работы двигателя. Карбюраторный двигатель, особенно транспортный, работает на самых различных скоростных и нагрузочных режимах при частой их смене. Чтобы карбюратор мог надежно устанавливать требуемое соотношение между топливом и воздухом в горючей смеси при работе на любом режиме двигателя, он снабжается рядом систем и устройств главной дозирующей системой с корректированием подачи топлива с целью обеспечения необходимого состава смеси при работе двигателя на всех основных эксплуатационных режимах системой холостого хода для обеспечения устойчивой работы двигателя при малой нагрузке и на режиме холостого хода системой для обогащения смеси при работе двигателя на режиме максимальной мощности и близких к нему режимах (для этой цели в карбюраторе устанавливается экономайзер) устройством для обеспечения хорошей приемистости двигателя (ускорительный насос для подачи дополнительного количества топлива с целью обогащения
[c. 227]
В двигателях низкого сжатия смесеобразование происходит вне рабочего цилиндра в специальном приборе, который называется карбюратором, поэтому такие д. в. с. называются карбюраторными. В систему питания карбюраторного двигателя входят устройства для питания его воздухом (воздушный фильтр, воздухопроводы) и топливная система, состоящая из топливного бака, топливного насоса, одного или двух топливных фильтров, топливопроводов и карбюратора. В карбюраторных двигателях горючей смесью является смесь воздуха с парами топлива в таком соотношении, чтобы горение ее в цилиндре протекало быстро и топливо при этом полностью сгорало. [c.169]
Топливо и горючая смесь. Карбюраторные двигатели работают на бензине, который получают из нефти. Автомобильный бензин — смесь жидких углеводородов (приблизительно 85 % углерода, 15 % водорода и небольшое количество примесей), легко испаряющихся и воспламеняющихся, что и сделало бензин помимо других достоинств самым удобным топливом для автомобилей.
![](/800/600/https/ds04.infourok.ru/uploads/ex/02a6/000c241d-26d1eb2b/img7.jpg)
Для автомобильного карбюраторного двигателя характерны следующие основные режимы работы пуск двигателя, требующий вследствие плохого испарения топлива очень богатую смесь режим холостого хода и малых нагрузок, которому соответствует смесь с а = = 0,6…0,8 режим частичных нагрузок (а = 0,9…1,1) режим максимальной (полной) нагрузки (а=0,8…0,9) кроме того, резкое открытие дроссельной заслонки не должно сопровождаться ощутимым обеднением горючей смеси. Соответственна основным режимам работы двигателя в современном карбюраторе предусмотрены следующие системы и устройства пусковое устройство, система холостого хода, главное дозирующее устройство, экономайзер и ускорительный насос. [c.51]
Как следует их описанных рабочих процессов ДВС, теплота сгорающего в рабочей полости топлива преобразуется в механическое движение только на третьем такте, которому должны предшествовать такты впуска и сжатия. Это означает, что для начала работы ДВС его коленчатый вал следует привести во вращение внешней силой. Запустить карбюраторный двигатель небольшой мощности можно от руки вращением коленчатого вала рукояткой, палец которого сцепляется с храповиком на переднем конце вала. Более мощные ДВС запускают установленным на машине электродвигателем постоянного тока, называемым стартером и питаемым от аккумуляторной батареи. Дизели средней и большой мощности запускают с помощью вспомогательного карбюраторного двигателя, обычно одноцилиндрового двухтактного, установленного на основном дизеле и запускаемого в свою очередь стартером. Рабочий процесс двухтактного двигателя отличается от работы четырехтактного тем, что у него горючая смесь поступает в рабочую камеру в начале хода сжатия, а отработавшие газы удаляются в конце рабочего хода продувкой потоком горючей смеси.
[c.29]
В карбюраторном двигателе, в отличие от дизеля, горючая смесь приготовляется до поступления ее в цилиндр. Эта смесь готовится Б карбюраторе, расположенном перед впускным трубопроводом. Назначение карбюратора является образование смеси с правильным соотношением топлива и воздуха, т. е. получение оптимального коэффициента избытка воздуха, обеспечение наилучших условий сгорания смеси, что достигается хорошим распыливанием топлива и тщательным перемешиванием его с воздухом, и правильная количественная подача (дозировка) горючей смеси, необходимой для работы двигателя на том или ином режиме.
[c.293]
Рассмотренный карбюратор является простейшим и в таком виде не может обслуживать двигатель с переменным числом оборотов. Если простейший карбюратор отрегулировать на требуемый состав смеси при некотором положении дроссельной заслонки, то при большом открытии ее увеличивается количество топлива в смеси, т. е. смесь становится более богатой топливом. При работе же карбюраторного двигателя на разных режимах требуется горючая смесь неодинакового состава для холостого хода и больших нагрузок (мощностей) необходима богатая смесь (а1). [c.294]
Приборы системы питания карбюраторных двигателей. Современные карбюраторы имеют ряд устройств и сг. стем, с помощью которых возможно приготовить горючую смесь нужного состава для всех режимов работы двигателя.
[c.53]
Для автомобильных карбюраторных двигателей характерны следующие режимы работы пуск двигателя, требующий вследствие плохого испарения топлива очень богатую смесь холостой ход и малые нагрузки, которым соответствует состав смеси а = 0,6 0,8 частичные нагрузки а = 0,9-4-1,1) максимальные (полные) нагрузки (а = 0,8 0,9) резкое открытие дроссельной заслонки, которое не должно сопровождаться ощутимым обеднением горючей смеси. [c.66]
Для автомобильных двигателей применяется, как правило, жидкое или газообразное топливо. В абсолютном большинстве автомобильных двигателей нашей страны, в том числе и в изучаемых, применяется дизельное топливо или бензин. И дизельное топливо, и бензин являются продуктом переработки нефти и имеют достаточно высокую теплотворную способность.
![](/800/600/https/www.ok-t.ru/studopediaru/baza15/381967230196.files/image005.jpg)
Карбюраторный двигатель — двигатель, у которого горючая смесь из топлива и воздуха образуется вне цилиндров (в карбюраторе) с принудительным зажиганием горючей смеси электрической искрой для преобразования полученной при сгорании топлива тепловой энергии в механическую работу.
[c.410]
Смесеобразование в поршневых двигателях внутреннего сгорания. В двигателях внешнего смесеобразования горючая смесь образуется вне цилиндра двигателя — в специальном приборе, называемом карбюратором или смесителем. Топливом для таких двигателей является бензин, лигроин и другое легкое нефтяное топливо или горючие газы. В первом случае двигатели принято называть карбюраторными, во втором — газовыми. [c.230]
В состав системы питания входят воздухоочиститель, очищающий атмосферный воздух от частичек пыли топливный бак, предназначенный для создания запаса топлива на определенное время работы двигателя топливный насос низкого давления (бензонасос у карбюраторного и подкачивающая помпа у дизельного двигателя), подающий топливо из топливного бака к карбюратору (у карбюраторного двигателя) или к насосу высокого давления (у дизеля) топливные фильтры, очищающие топливо от загрязняющих примесей карбюратор, приготовляющий горючую смесь определенного состава в зависимости от режима работы двигателя топливный насос высокого давления (у дизелей), подающий необходимое количество топлива к форсункам, которые впрыскивают его под давлением 8 МПа и выше в мелкораспыленном состоянии в цилиндры дизеля топливопроводы, соединяющие агрегаты системы питания впускной трубопровод (коллектор), подводящий горючую смесь или атмосферный воздух к цилиндрам двигателя выпускной трубопровод (коллектор), отводящий отработавшие газы от цилиндров двигателя.
[c.240]
Для полного сгорания 1 кг жидкого или 1 газообразного топлива требуется количество воздуха о. называемое теоретически необходимым количеством воздуха. Величина о достаточна для полного сгорания топлива, если перемешивание его с воздухом настолько хорошее, что все элементы топлива полностью сгорают. В действительности такое перемешивание в д. в. с. не осуществляется и количество воздуха, требуемое для полного сгорания 1 кг или 1 м топлива, больше теоретически необходимого. Здесь, однако, надо иметь в виду, что в автомобильных и авиационных карбюраторных двигателях при работе на режиме наибольшей мощности горючая смесь обогащается топливом и тогда количество воздуха в смеси меньше теоретически необходимого. Понятно, что в этом случае происходит неполное сгорание. Отношение количества воздуха Ь, действительно поступающего в двигатель и участвующего в сгорании топлива, к теоретически необходимому количеству воздуха ц называется коэффициентом избытка воздуха
[c. 228]
На фиг. 19 изображена схема карбюраторного двигателя, в цилиндре которого рабочая смесь воспламеняется от электрической искры. Для этой цели в головке цилиндра между клапанами установлена свеча С. К впускному трубопроводу присоединен карбюратор К, в котором при прохождении через него воздуха образуется горючая смесь. [c.37]
Поршневой двигатель внутреннего сгорания с подводом теплоты при постоянном объеме является в настоящее время самым распространенным тепловым двигателем. Необходимая для превращения в работу теплота получается в нем за счет сжигания горючей смеси в цилиндре. Горючая смесь, представляющая собой смесь топлива (паров бензина, горючего газа) с воздухом, приготавливается в специальных смесителях, называемых карбюраторами. Поэтому такого рода двигатели часто называют карбюраторными. [c.106]
Автомобильный двигатель не всегда работает на одном, постоянном составе смеси. Для определения состава горючей смеси, на котором работает двигатель, вводят понятие о коэффициенте избытка воздуха а (альфа), который представляет собой отношение количества действительного участвующего в процессе сгорания воздуха к теоретически необходимому его количеству. В том случае, когда действительное количество воздуха совпадает с теоретическим, а = 1. Когда в горючей смеси имеемся избыток воздуха, т. е. сгорает бедная смесь, то коэффициент избытка воздуха будет больше единицы, а при сгорании богатых смесей — меньше единицы. Карбюраторные двигатели работают обычно с изменениями коэффициента избытка воздуха в пределах 0,8-1,2.
[c.47]
Карбюраторный двигатель может развивать максимальную мощность при установке в карбюраторе жиклеров, обеспечивающих обогащенный состав горючей смеси, или при включении в действие специального устройства (называемого экономайзером). обогащающего горючую смесь топливом. Двигатели, предназначенные для строительных машин, не регулируют на максимальную мощность, так как длительная эксплуатация на этой мощности приводит к преждевременному износу двигателя. [c.131]
В цилиндры карбюраторного двигателя топливо и необходимый для его сгорания воздух поступают в виде горючей топливовоздушной смеси, приготавливаемой в карбюраторе и частично во впускном трубопроводе. При смешении ее с небольшим количеством отработавших газов, остающихся от предшествующего рабочего цикла, в цилиндрах образуется рабочая смесь.
[c.38]
В качестве пусковых д. в. с. для пуска тракторных дизелей применяют двух- и четырехтактные карбюраторные двигатели, работающие на бензине. Горючая смесь таких двигателей должна состоять из паров топлива, тщательно перемешанных с воздухом. Их количественное соотношение должно обеспечивать полное сгорание — окисление кислородом воздуха всего топлива, входящего в состав горючей смеси. Необходимость испарения топлива диктуется тем, что только при его парообразном состоянии обеспечивается возможность воспламенения смеси электрической искрой и быстрое ее сгорание. [c.70]
Система питания карбюраторного двигателя служит для приготовления горючей смеси, за счет сгорания которой в цилиндрах двигателя осуществляется его работа. Горючая смесь состоит из топлива и воздуха, соединенных в определенной пропорции и тщательно перемешанных друг с друге .
[c.179]
Рабочий процесс двухтактного карбюраторного двигателя происходит за два хода поршня или за один оборот коленчатого вала. В этом двигателе нет специального газораспределительного механизма. Вместо него цилиндр имеет окна (рис. 10) впускное окно /, соединяющее цилиндр 4 с карбюратором, выпускное окно 2 и перепускное 6, соединяющее цилиндр 4 с герметичным картером 8 при помощи канала 7. Перемещающийся внутри цилиндра поршень в определенной последовательности открывает и закрывает окна, выполняя функции газораспределительного механизма. В цилиндр двухтактного двигателя с кривошипно-ка-мерной продувкой горючая смесь из карбюратора поступает через картер. Для подготовки двигателя к работе необходимо наполнить цилиндр горючей смесью, для этого поршень должен сделать два подготовительных хода первый ход — впуск горючей смеси в картер второй ход—перепуск горючей смеси из картера в цилиндр. После этого двигатель подготовлен к работе. Рассмотрим, что происходит в нем во. время первого и второго тактов.
[c.20]
Для улучшения рабочего процесса двухтактного карбюраторного двигателя в цилиндре, как правило, делают по два окна для впуска горючей смеси, выпуска отработавших газов и перепуска смеси. Картер у такого двигателя сухой, т. е. масло в него не наливают. Масло, нужное для смазки двигателя, добавляют в топливо в определенной пропорции (1 15 или 1 20), тщательно перемешивают, а затем масляно-топливную смесь заливают в топливный бак. Горючая смесь, поступающая из карбюратора в цилиндр, состоит из мелкораспыленного топлива, масла и чистого воздуха. [c.21]
В карбюраторном двигателе для улучшения смесеобразования горючую смесь подогревают во впускном трубопроводе. Учитывая, что подогрев горючей смеси при поступлении в цилиндр компенсирует часть затрат теплоты на испарение топлива в карбюраторе, при расчете рабочего цикла такого двигателя можно принимать ДГ = О ч- 20° С. [c.80]
Принцип действия поршневого двигателя внутреннего сгорания. На рис. 164 приведена схема поршневого двигателя внутреннего сгорания. Цилиндр 6 сверху закрыт крышкой 1, называемой головкой. В головке имеются два отверстия, закрываемые впускным 5 и выпускным 4 клапанами, и одно отверстие для установки форсунки 3 (в дизеле) или свечи зажигания (в карбюраторном двигателе). Через впускное отверстие в цилиндр поступает воздух (в дизеле) или горючая смесь (в карбюраторном двигателе), а через выпускное — выходят отработавшие газы. Внутри цилиндра размещ,ается поршень 7, соединенный поршневым пальцйм
[c.219]
Всасывающий клапан закрывается после того, как поршень пройдет н. м. т. При этом, несмотря на начавшийся подъем поршня, через открытый всасывающий клапан в цилиндр по инерции лродолжает поступать воздух (или горючая смесь в карбюраторном двигателе). Величина запаздывания закрытия всасывающего клапана зависит в основном от числа оборотов коленчатого вала в минуту. Для различных двигателей она составляет 20—75°.
[c. 139]
Основным топливом для карбюраторных двигателей являются бензины различных видов и марок, очень редко используется керосин. Бензин должен обладать хорошими карбюрационными свойствами, т. е. обеспечивать легкий пуск двигателя и образовывать однородную по составу горючую смесь, дающую устойчивую работу двигателя на всех режимах. Кроме того, бензин должен хорошо распыливаться и полностью испаряться, а также обладать определенной плотностью и вязкостью. [c.157]
Рабочая смесь в карбюраторном двигателе воспламеняется от электрической искры, возникающей между электродами свечи зажигания. Искровой промежуток в свече зажигания, который равен 0,5—0,8 мм, представляет собой часть электрической цепи со значительным сопротивлением для тока. Это сопротивление повышается с увеличением давления газов в цилиндре, для его преодоления необходимо напряжение 12—20 кВ. При появлении искры сопротивление между электродами снижается и повышается температура искры, которая превращается в дугу в виде искрового разряда. Искра воспламеняет небольшую часть горючей смеси у электродов свечн, затем фронт пламени распространяется по всей камере сгорания. При батарейном зажигании ток высокого напряжения получается в индукционной катушке зажигания трансформацией постоянного тока, поступающего в нее через прерыватель из источника тока. Схема батарейной системы зажигания показана на рис. 163. В эту систему входят источники тока (аккумуляторная батарея 8 и генератор /), катушка зажигания 3, прерыватель 2, распределитель 4, свечи зажи-
[c.233]
Двигателем газообразного топлива, или газовым, называется двигатель, в котором топливо подводится к органам смесеобразования в газообразном состоянии. Наибольшее распространение получили газовые двигатели, в которых воспламенение горючей смеси происходит от электрической искры, а горючая смесь приготовляется в особом приборе — смесителе. Процесс сгорания смеси в двигателях этой группы как четырехтактных, так и двухтактных протекает при постоянном объеме. В настоящее время в качестве топлив для двигателей, работающих на сжатых газах, применяются, главным образом, светильный и естественный (метан) газы. Газовые двигатели для мощных стационарных установок выполняются в виде самостоятельных констрз кций.. Для транспортных силовых установок газовые двигатели строятся на базе карбюраторных двигателей или дизелей. Принципиальная схема действия газового двигателя изображена на фиг. 134, а. Чередование процессов, происходящих в цилиндре газового двигателя, такое же, как и в четырехтактном карбюраторном двигателе, так как различие между процессами чисто количественное, а не качественное.
[c.302]
При пуске карбюраторного двигателя частота вращения коленчатого вала должна быть достаточной для подготовки горючей смеси, способной воспламениться от электрической искры. Небольшие пусковые частоты вращения, низкая температура деталей двигателя, воздуха и топлива затрудняют образование топливовоздушной смеси оптимального состава не только по коэффициенту избытка воздуха, но и по воспламеняемости.
![](/800/600/https/s1.slide-share.ru/s_slide/90d38ae229f098993a4bdab36d07e096/2fbe7ce9-688e-4836-a294-d1fecd775014.jpeg)
Система питания служит для приготовления и подачи горючей смеси в цилиндры двигателя. Общая схема системы питания карбюраторного двигателя показана на рис. 31. Топливо из бака 1 по топливопроводу 2 насосом 4 подается в карбюратор 5, где смешивается с воздухом в нужной пропорции. Готовая го- рючая смесь поступает по впускному трубопроводу 7 в цилиндры. В цилиндрах смесь сгорает, выполняя работу, и отработавшие газы по выпускному трубопроводу 8 через глушитель 9 поступают в атмосферу. [c.70]
Давление в цилиндре в конце выпуска выше давления окружающей среды на 0,02- 0,10 ата, так как в процессе выталкивания некоторый перепад давлений расходуется на преодоление сопротивлений в выпускной системе. Отрицательное влияние повышенного давления в камере сжатия состоит в том, что при свободном впуске поступление свежего заряда в цилиндр начинается лишь с момента, когда давление остаточных газов становится меньше давления окружающей среды. Это ухудшает наполнение двигателя. Для осуществления наполнения цилиндра свежим зарядом необходим перепад давлений Ар между внешней средой и цилиндром в целях создания скоростного напора и преодоления сопротивления движению газов во впускной системе. Этот перепад обычно составляет 0,1-5-0,05 ата. Пониженное давление в цилиндре в период впуска приводит к понижению плотности заряда, а следовательно, к уменьшению мощности двигателя. Плотность поступающего заряда уменьшается также за счет его подогрева о стенки впускных клапанов и цилиндра, нагретых от предыдущих циклов. Этот подогрев возрастает по мере повышения нагрузки двигателя. В карбюраторных двигателях часто горючую смесь предварительно специально подогревают во впускнохМ трубопроводе для лучшего испарения топлива. Подогрев заряда, понижая его плотность, оказывает дополнительное отрицательное влияние на мощность двигателя.
[c.191]
Богатые горючие смеси обычно используют только в карбюраторных двигателях 1) при их работе на малых нагрузках и холостом ходе, когда горючая смесь сильно разбавляется остаточными газами и обогащение необходимо во избежание замедленного сгорания и, следовательно, ухудшения экономичности или даже остановки двигателя 2) при полной нагрузке, т. е. при полностью открытой дроссельной заслонке для получения макси.мальной мощности двигателя.
[c.83]
Механизм газораспределения служит для впуска свежего заряда (горючая смесь или воздух) в цилиндры двигателя и выпуска отработавшргх газов в соответствии с протеканием рабочего цикла. В автомобильных карбюраторных двигателях применяется механизм газораспределения клапанного типа с 1 ижним или верхним расположением клапанов. [c.69]
Система питания карбюраторных двигателей.
Система питания карбюраторного двигателя
Система питания карбюраторного бензинового двигателя с искровым зажиганием служит для хранения топлива, его очистки от механических примесей, приготовления горючей смеси, а также для подачи горючей смеси в цилиндры двигателя и отвода из них отработавших газов. Кроме того, в функции системы питания входит очистка воздуха, используемого для приготовления горючей смеси.
Горючая смесь состоит из топлива и воздуха, соединенных в определенной пропорции и тщательно перемешанных друг с другом. При сгорании горючей смеси в цилиндрах двигателя выделяется тепловая энергия, преобразуемая затем в механическую энергию.
Система питания карбюраторного двигателя (Рис. 1) состоит из топливного бака 6, топливного насоса 7, воздушного фильтра 1, карбюратора 4, топливопроводов 5, впускного 2 и выпускного 3 трубопроводов, приемной трубы 8 глушителей и собственно глушителей 9 и 10.
Основным топливом, используемым для работы карбюраторных двигателей с принудительным воспламенением, является бензин – жидкий продукт переработки нефти, горючая смесь лёгких углеводородов.
***
Схема работы карбюраторной системы питания
Топливо (бензин) из бака подается насосом 7 по топливопроводам 5 в карбюратор 4. Через воздушный фильтр 1 в карбюратор поступает воздух. Приготовленная в карбюраторе из топлива и воздуха горючая смесь подается в цилиндры двигателя по впускному трубопроводу 2. Отработавшие газы отводятся из цилиндров двигателя в окружающую среду через выпускной трубопровод 3, приемную трубу 8 глушителей, основной 10 и дополнительный 9 глушители.
В системе питания бензиновых двигателей автомобилей обязательными элементами являются фильтры очистки топлива (у двигателей грузовых автомобилей — фильтры грубой и тонкой очистки), а также воздушный фильтр.
Топливо из бака через фильтры насосом подается к карбюратору, где смешивается в определенной пропорции с воздухом, поступающим через воздухоочиститель. Полученная горючая смесь из-за разрежения в цилиндрах двигателя с большой скоростью перемещается по впускному трубопроводу, при этом дополнительно перемешиваясь, и попадает в цилиндры двигателя, где и сгорает посредством искрового воспламенения от электрической свечи.
За счет давления образовавшихся при сгорании горючей смеси газов, воздействующих на детали и узлы кривошипно-шатунного механизма, осуществляется работа двигателя.
***
Автомобильный бензин
Главная страница
Дистанционное образование
Специальности
Учебные дисциплины
Олимпиады и тесты
Принцип работы карбюратора – главные проблемы и возможные неполадки
Карбюратор — это основной элемент системы питания двигателя внутреннего сгорания, работающего на бензине. Такие двигатели использовались с самого начала автомобилестроения, но в последние годы их активно заменяют инжекторы, которые стали более экономичными и современными. Тем не менее, карбюратор стал основополагающим элементом автомобильной техники, до сих пор применяется во многих механизмах и системах, потому этот узел достоин нашего внимания. Сегодня мы поговорим об основных принципах работы простых карбюраторов и рассмотрим важные особенности его функционирования.
Также стоит подходить к изучению карбюратора с практичной стороны и описать самые частые и досадные неполадки, которые встречаются в карбюраторных двигателях. Многие автомобилисты продолжают эксплуатировать авто с таким типом силового агрегата, потому для них важно знать причины и возможные пути решения самых частых неполадок. Рассмотрим основу конструкции и работы устройства для подачи топлива в двигатель.
Карбюраторный двигатель — главные принципы смешивания топлива
Узел карбюратора является основным инструментом смешивания топлива в бензиновом двигателе старого типа. В камерах этой части агрегата происходит смешивание топлива с воздухом и подача нужного количества бензиновой смеси в камеру сгорания. Сверху в карбюратор подается воздух, который проходит очистку фильтром. Кстати, воздушный фильтр часто недооценен в системе карбюраторного двигателя. Его роль достаточно велика.
В боковой части карбюратора присутствует вход бензина. Бензин и воздух подаются в одну камеру, топливо распыляется на мелкие части, чтобы происходило смешивание бензина и воздуха. Только в таком состоянии топливо может интенсивно и эффективно сгорать, давая нужную силу двигателю. Принцип работы карбюратора выглядит следующим образом:
- сверху в систему подается нужное количество очищенного и отфильтрованного воздуха;
- сбоку в смесительную камеру принудительно закачивается бензин в необходимом количестве;
- далее в камере происходит смешивание воздуха и топлива, что производит готовую смесь для работы двигателя;
- в ходе такта работы агрегата нижняя заслонка карбюратора открывается и подает в камеры сгорания нужное количество топлива;
- также есть дополнительная заслонка, соединенная с педалью газа, для принудительного увеличения подачи топлива;
- заслонкой можно регулировать с помощью подсоса — принудительно увеличить интенсивность работы двигателя;
- поплавковая камера позволяет поддерживать строго определенный уровень топлива в карбюраторе;
- система заслонок и жиклеров работает на создание надежного функционирования всех элементов карбюратора.
Описать работу этого узла можно и более профессионально, используя технические термины и инженерные схемы. Мы решили остановиться на простом пояснении сложных истин автомобильной техники. Тем не менее, простейший карбюратор, описанный нами выше, не является единственным вариантом смешивающей топливо техники в машинах современного типа.
Существуют такие карбюраторы с автоматическим подсосом, устройства с разными режимами работы. Карбюраторы до сих пор активно используются в мотоциклетной сфере, а также при производстве некоторых видов спецтехники. Существует целая индустрия, для которой выполняется техническое усовершенствование этого узла и изобретение новых способов управления топливной смесью.
Поломки и частые проблемы в работе карбюратора
Часто гораздо интереснее устройства и принципа работы определенного автомобильного узла будет узнать о возможных неполадках и частых проблемах технической детали машины. Потому мы также опишем распространенный ряд проблем. Наиболее частые проблемы с карбюратором возникают в тех случаях, когда в камеру смешивания попадает грязное топливо или некачественно очищенный воздух. Эти проблемы являются основой поломок карбюратора.
Поэтому в автомобили с таким типом двигателя следует постоянно следить за качеством фильтров топливной и воздушной систем. Иначе машина не сможет нормально работать, будет постоянно выдавать различные проблемы. Карбюраторные авто редко оснащаются хорошими бортовыми компьютерами, потому неполадку вы не увидите на экране системы диагностики. Самые важные показатели наличия проблем в системе следующие:
- двигатель долго заводится, для запуска может потребоваться на один подход зажигания;
- работает агрегат с перебоями, присутствует плавание или плохой набор оборотов;
- повышается потребление топлива, порой рост расхода возможен на 30% и даже более;
- снижается интенсивность работы двигателя, уходит часть мощности, разгон становится долгим;
- двигатель троит, внутри могут быть слышны периодичные мелкие взрывы;
- звук работы силового агрегата слишком сухой или изменился в иных вариантах;
- из выхлопной трубы идет обильный дым, который может проходить после прогрева машины.
Это лишь некоторые показатели возможных неполадок вашего силового агрегата. Стоит помнить о том, что качественная работа двигателя с карбюраторной подачей топлива возможна только в том случае, если все детали функционируют в нормальном режиме. Необходимо следить за всеми особенностями работы двигателя, замечать любые, даже самые незначительные неполадки.
В случае с карбюраторным механизмом неполадки развиваются достаточно долго. Расход может расти постепенно и не тревожить вас резкими изменениями стоимости поездки. Потому нужно внимательно следить за качеством работы двигателя, вовремя обслуживать автомобиль и постоянно менять фильтры топлива и воздуха. Только с такими особенностями вы сможете получить необходимую длительную и удачную работу двигателя. Предлагаем подробное видео о карбюраторе и системах его работы:
Подводим итоги
Карбюраторная система подачи топлива имеет ряде преимуществ перед инжектором, но она уже устарела и используется только в некоторых вариантах техники. Сегодня большинство автомобилей и другой современной техники используют прямую подачу топлива и воздуха в камеру сгорания без предварительного смешивания. Тем не менее, карбюратор является более надежным типом оборудования, который способен работать в более сложных условиях.
Ранее перед доступом к двигателю бензин и воздух проходили ряд очистительных процессов и смешивались безопасно в камере карбюратора. Сегодня же ресурсы попадают в агрегат напрямую, чем могут привести к определенным проблемам с двигателем. Тем не менее, инжектор также обладает рядом важных преимуществ. Расход топлива на таких двигателях ниже, а срок службы системы подачи топлива при хорошем качестве бензина велик. Как вы относитесь к автомобилям с карбюраторными бензиновыми двигателями?
Важнейшей особенностью карбюраторных двигателей является приготовление горючей смеси. Это двигатели низкого сжатия с внешним смесеобразованием с принудительным зажиганием горючей смеси. Они выполняются преимущественно четырехтактными. Карбюраторные двигатели работают на легком жидком топливе. Процесс сгорания в этих двигателях обычно длится 1/300—1/400 сек. Для того чтобы в столь короткое время обеспечить полное сгорание, смесь должна быть соответствующим образом приготовлена. Процесс приготовления горючей смеси называется карбюрацией, а прибор, в котором осуществляется карбюрация, называется карбюратором Карбюратор должен выполнять следующие операции: а) приготовлять горючую смесь нужного качества, т. б) обеспечивать хороший распыл, с тем чтобы все топливо испарилось до начала сгорания; в) осуществлять поступление в цилиндр однородной по составу смеси. Рассмотрим способ образования горючей смеси в простейшем карбюраторе (фиг. 71). Топливо из бачка под напором поступает по каналу, перекрытому игольчатым клапаном 4, в поплавковую камеру 2. Поплавком 3 уровень топлива в поплавковой камере, а следовательно, и напор топлива поддерживается почти постоянным, с тем чтобы этот уровень был несколько ниже отверстия форсунки 7; таким образом, при неработающем двигателе утечка топлива не происходит. При всасывающем ходе поршня 10, т. е. при движении его вниз воздух через патрубок 8 проходит диффузор 6, в котором его скорость значительно повышается, а следовательно, давление понижается. Благодаря разрежению топливо из поплавковой камеры через калиброванное проходное отверстие 1, называемое жиклером, и форсунку 7 фонтанирует в диффузор, распадаясь при этом на мелкие капли, испаряющиеся в воздушном потоке. Воспламенение сжатой рабочей смеси производится электрической искрой. Угол опережения зажигания обычно берется 25—30° до в. м. т. Сгорание смеси происходит с мгновенным повышением давления при почти неизменном объеме. Горючая смесь топлива и воздуха, составленная так, что топливо в двигателе сгорает полностью, называется нормальной. При нормальной горючей смеси двигатель работает наиболее экономично. Если количество воздуха, приходящееся на единицу веса топлива в смеси, будет больше нормальной, то такая смесь называется бедной. Сгорание бедной смеси происходит медленнее с догоранием в период расширения и выпуска, в связи с чем двигатель не развивает полной мощности. Если количество воздуха, приходящееся на единицу, веса топлива, меньше, чем у нормальной горючей смеси, то такая смесь называется богатой. При богатой смеси, вследствие недостатка воздуха, происходит неполное сгорание, что вызывает падение мощности двигателя при большом расходе топлива. Рассмотренный выше карбюратор может обслуживать двигатель, работающий с постоянным числом оборотов. При увеличении числа оборотов двигателя в таком карбюраторе смесь обогащается. Поэтому для обслуживания двигателей, работающих при переменном режиме, применяются карбюраторы, снабженные рядом добавочных приспособлений. |
Режимы работы двигателя и состав горючей смеси
Состав горючей смеси
Для работы двигателя внутреннего сгорания необходима смесь топлива с воздухом. В карбюраторных двигателях топливо (бензин) смешивается с воздухом в определенной пропорции вне цилиндров и, частично испарившись, образует горючую смесь. Этот процесс называется карбюрацией, а прибор, приготавливающий такую смесь, карбюратором.
Смесь, пройдя по впускному трубопроводу, попадает в цилиндры двигателя, где смешивается с остатками горячих отработавших газов, образуя рабочую смесь. Частички распыленного топлива при этом испаряются. Для пуска двигателя и его работы на разных режимах, необходим различный состав горючей смеси. Поэтому карбюратор устроен так, что позволяет изменять количественное соотношение распыленного топлива и воздуха в смеси, поступающей в цилиндры двигателя.
Для полного сгорания 1кг топлива необходимо около 15 кг воздуха. Топливовоздушная смесь в такой пропорции называется нормальной. Режим работы двигателя на этой смеси имеет удовлетворительные показатели по экономичности и развиваемой мощности. Незначительное увеличение количества воздуха в топливовоздушной смеси по сравнению с его нормальным содержанием (но не более 17 кг) приводит к обеднению смеси. На обедненной смеси двигатель работает в наиболее экономичном режиме, т.е. расход топлива на единицу развиваемой мощности минимален. Полную мощность на такой смеси двигатель не разовьет.
При избытке воздуха (17 кг и более) образуется бедная смесь. Двигатель на такой смеси работает неустойчиво, при этом расход топлива на единицу вырабатываемой мощности возрастает. На смеси переобедненной, содержащей более 19 кг воздуха на 1 кг топлива, работа двигателя невозможна, так как смесь не воспламеняется от искры. Небольшой недостаток воздуха в топливовоздушной смеси по сравнению с нормальным (от 15 до 13 кг) способствует образованию обогащенной смеси. Такая смесь позволяет двигателю развивать максимальную мощность при несколько повышенном расходе топлива.
Если воздуха в смеси меньше 13 кг на 1 кг топлива, смесь богатая. Из-за недостатка кислорода топливо сгорает не полностью. Двигатель на богатой смеси работает в неэкономичном режиме, с перебоями и при этом не развивает полной мощности. Переобогащенная смесь, содержащая менее 5 кг воздуха на 1 кг топлива, не воспламеняется — работа двигателя на ней невозможна.
Пуск двигателя
При пуске холодного двигателя часть распыляемого топлива оседает на стенках впускного трубопровода, а часть испарившегося топлива, попав в цилиндры, конденсируется на стенках. К тому же при низкой температуре воздуха смесеобразование ухудшается, т. к. замедляется испарение бензина. Поэтому для пуска холодного двигателя необходимо, чтобы карбюратор приготовил переобогащенную топливовоздушную смесь.
Работа на холостом ходу
На холостом ходу частота вращения коленчатого вала двигателя не велика, а дроссельные заслонки карбюратора почти полностью закрыты. Из-за этого вентиляция цилиндров не столь эффективна, по сравнению с работой на средней и высокой частотах вращения коленчатого вала и мало количество горючей смеси, поступающей в двигатель. В рабочей смеси содержится большое количество отработавших (остаточных) газов. Поэтому для устойчивой работы двигателя на холостом ходу необходима обогащенная смесь.
Режим частичных нагрузок
На режиме частичных нагрузок от двигателя не требуется полная мощность. Дроссельные заслонки открыты не полностью, но вентиляция цилиндров хорошая. Поэтому на этом режиме достаточно обедненной горючей смеси. Соотношение развиваемой двигателем мощности к количеству потребляемого топлива позволяет считать режим частичных нагрузок самым экономичным.
Режим полной нагрузки
На режиме полной нагрузки от двигателя требуется максимальная или близкая к максимальной мощность. Двигатель при этом работает на высоких оборотах, а дроссельные заслонки полностью (или почти полностью) открыты. Для этого режима требуется обогащенная смесь, обладающая повышенной скоростью сгорания.
Режим резкого увеличения нагрузки
При работе двигателя в режиме резкого увеличения нагрузки, например при разгоне автомобиля, необходима обогащенная смесь. Но поскольку процесс смесеобразования обладает некоторой инертностью, чтобы предотвратить возникновение«провала» при наборе скорости, требуется дополни тельное кратковременное обогащение горючей смеси. Для этого дополнительное топливо впрыскивается непосредственно в смесительную камеру карбюратора.
Как работает двигатель внутреннего сгорания (ДВС)? – Цена нового авто
Двигатель внутреннего сгорания (или ДВС) – это тепловой двигатель, который преобразует энергию от сжигания топлива в механическое движение. При сжигание даже небольшого количества топлива в закрытом пространстве выделяются газы, которые значительно повышают давление. Как раз это давление и приводит к движению поршень двигателя или отдельного цилиндра.
Поршень в свою очередь связан с коленчатым валом, который движение поступательное преобразует во вращательное. А чтобы движение происходило непрерывно, в цилиндр с определенной цикличностью подаются на сжигания все новые небольшие порции топлива. Зажигание топлива в цилиндре происходит благодаря “свече”. Она создает искру в определенный момент времени.
Рассмотрим конструкцию двигателя внутреннего сгорания
Работа ДВС основана на 4 тактах или цикле Отто и осуществляется при одновременной работе четырех цилиндров. Итак, как работает двигатель внутреннего сгорания, видно на следующей схеме.
Такты работы двигателя внутреннего сгорания или т.н. цикл Отто:
1. Такт впуска. Поршень опускается вниз образуя в цилиндре пустое пространство. После того, как впускной клапан открывается кулачками распределительного вала, из карбюратора поступает топливно-воздушная смесь. Когда поршень достигает самого нижнего положения, впускной клапан закрывается.
2. Такт сжатия. Поршень поднимается и сжимает воздушно-топливную смесь, поднимая при этом ее температуру. Когда поршень поднимается в верхнюю точку, свеча подает искру и воспламеняет смесь.
3. Рабочий такт. Топливо сгорает, выделяю продукты горения – газы, которые создают давление и выталкивают поршень вниз. При этом и впускной и выпускной клапаны в закрытом положении.
4. Такт выпуска. Открывается выпускной клапан, и поскольку коленвал продолжает вращаться по инерции, продукты сгорания выдавливаются через выпускной клапан. Цикл повторяется…
Двигатели внутреннего сгорания бывают карбюраторные и инжекторный.
Карбюраторный двигатель работает вместе с карбюратором, в котором подготавливается воздушно-топливная смесь. Для смешивания воздуха и топливо используется аэродинамическая сила. Цилиндр всасывает необходимое количество смеси.
Инжекторный двигатель – это современная система. То, как в поток воздуха через специальные форсунки впрыскивается топливо, какая должна быть дозировка топлива, управляется электронным блоком управления.
Как работает карбюратор?
Как работает карбюратор? — Объясните этот материал РекламаКриса Вудфорда. Последнее обновление: 2 февраля 2021 г.
Топливо плюс воздух равно движению — это основная наука, стоящая за большинством транспортных средств.
которые путешествуют по земле, по морю или по небу. Автомобили, грузовики и
автобусы превращают топливо в энергию, смешивая его с воздухом и сжигая в
металлические цилиндры внутри их двигателей. Точно сколько топлива и воздуха
потребности двигателя меняются от момента к моменту, в зависимости от того, как долго
он работает, как быстро вы едете и множество других
факторы.В современных двигателях используется система с электронным управлением. называется впрыск топлива для регулирования топливно-воздушной смеси, так что это
ровно с минуты поворота ключа до момента переключения
двигатель снова выключается, когда вы достигаете пункта назначения. Но пока эти
были изобретены умные устройства, практически все двигатели полагались на
изобретательные устройства для смешивания топлива и воздуха, называемые карбюраторами (пишется
«карбюратор» в некоторых странах и часто сокращается до «карбюратора»). Что они собой представляют и как они работают? Давайте посмотрим поближе!
Работа: Коротко о карбюраторах: они добавляют топливо (красный) в воздух (синий), чтобы получилась смесь, подходящая для сгорания в цилиндрах.Цилиндры современных автомобилей более эффективно питаются системами впрыска топлива, которые потребляют меньше топлива и меньше загрязняют окружающую среду. Но вы по-прежнему найдете карбюраторы в двигателях старых автомобилей и мотоциклов, а также в компактных двигателях газонокосилок и бензопил.
Как двигатели сжигают топливо
Двигатели — механические штуки, но они тоже химические вещества: они разработан вокруг химической реакции, называемой сгоранием : когда вы сжигаете топливо в воздухе, вы выделяете тепловую энергию и производите углерод диоксид и вода как продукты жизнедеятельности.Для эффективного сжигания топлива вам должны использовать много воздуха. Это в равной степени относится и к автомобильному двигателю. что касается свечи, костра на открытом воздухе, угля или дрова в чьем-то доме.
С костром вам никогда не придется беспокойтесь о том, что у вас слишком много или слишком мало воздуха. При пожарах в помещении не хватает воздуха и гораздо важнее. Слишком мало кислорода вызовет пожар в помещении (или даже устройство для сжигания топлива, такое как газовая печь центрального отопления (котел), чтобы производят опасные загрязнения воздуха, в том числе токсичные угарный газ.
Рекламные ссылки Artwork: Теоретически автомобильному двигателю требуется в 14,7 раз больше воздуха, чем топлива, чтобы топливовоздушная смесь сгорала должным образом. Это называется стехиометрической смесью и состоит из 94 процентов воздуха и 6 процентов топлива. На практике соотношение может быть другим.
С автомобильным двигателем немного сложнее. Если у тебя есть
достаточно атомов кислорода, чтобы сжечь все ваши атомы топлива, это называется
стехиометрическая смесь . (Стехиометрия является частью химии,
химический эквивалент проверки того, что у вас достаточно каждого ингредиента
прежде чем приступить к приготовлению пищи по рецепту.) В случае автомобильного двигателя,
соотношение обычно составляет около 14,7 частей воздуха на 1 часть топлива (хотя это
зависит от того, из чего именно состоит топливо).
Слишком много воздуха и недостаточно топлива означает, что двигатель горит
«бедный», когда слишком много топлива и недостаточно воздуха называется
сжигание «богатых». Немного избыточное количество воздуха (слегка обедненная смесь) даст лучшую экономию топлива, а небольшое количество воздуха (слегка богатая смесь) даст лучшую производительность. Иметь слишком много воздуха так же плохо, как и слишком
маленький; оба вредны для двигателя по-разному.
«Карбюратор называют «Сердцем» автомобиля, и нельзя ожидать, что двигатель будет работать правильно, выдавать необходимую мощность или работать плавно, если его «сердце» не выполняет свои функции должным образом.»
Эдвард Кэмерон, The New York Times, 1910
Что такое карбюратор?
Бензиновые двигатели рассчитаны на всасывание точно необходимого количества воздуха, поэтому топливо сгорает правильно, независимо от того, запускается ли двигатель холодным или греется на максимальной скорости.Правильный подбор топливно-воздушной смеси работа умного механического устройства, называемого карбюратором : трубка, которая пропускает воздух и топливо в двигатель через клапаны, смешивая их вместе в разных количествах, чтобы удовлетворить широкий спектр различных условия вождения.
Вы можете подумать, что слово «карбюратор» довольно странное, но оно происходит от глагола «карбюратор». Это химический термин, означающий обогащение газа путем соединения его с углеродом.
или углеводороды. Итак, технически карбюратор — это устройство, которое насыщает воздух (газ) топливом.
(углеводород).
Кто изобрел карбюратор?
Карбюраторы существуют с конца 19-го века. века, когда они были впервые разработаны пионером автомобилестроения (и основатель Mercedes) Карл Бенц (1844–1929). Раньше были попытки «карбюрации» другими способами. Например, французский пионер двигателей Жозеф Этьен Ленуар (1822–1900) первоначально использовал вращающийся цилиндр. с прикрепленными губками, которые погружались в топливо при повороте, вынимая его из контейнера и перемешивая с воздухом.[1]
На приведенной ниже диаграмме, которую я раскрасил для облегчения понимания, показан исходный Карбюратор Benz 1888 года выпуска; основной принцип работы (объясненный в рамке ниже) остается прежним и по сей день.
Иллюстрация: Очень упрощенная схема оригинального карбюратора Карла Бенца из
его патент 1888 г. Топливо из бака (синий, D) поступает в то, что он назвал генератором (зеленый, A).
внизу, где он испаряется. Пары топлива проходят вверх по серой трубе и встречаются с поступающим воздухом.
вниз по той же трубе, которая входит из атмосферы через перфорацию вверху.Воздух и топливо смешиваются в красной камере (F), затем проходят через клапан (бирюзовый, G) в цилиндр H, где они
сжечь, чтобы сделать власть. Работа из патента США 382 585: Карбюратор Карла Бенца. 8 мая 1888 г., любезно предоставлено Управлением по патентам и товарным знакам США.
Как работает карбюратор?
Фото: Типичный карбюратор не на что смотреть! Фото Дэвида Хоффмана предоставлено ВМС США.
Карбюраторы сильно различаются по конструкции и сложности. Самый простой из возможных
по сути большая вертикальная воздушная труба над цилиндрами двигателя с
горизонтальная топливная труба, соединенная с одной стороны.Когда воздух течет вниз
трубы, он должен проходить через узкий изгиб посередине, который
заставляет его ускоряться и заставляет его давление падать. Это перегнулось
секция называется Вентури . Падение давления воздуха
создает эффект всасывания, который всасывает воздух через топливную трубку в
сторона.
Иллюстрация: Эффект Вентури: когда жидкость течет в более узкое пространство, ее скорость увеличивается, но давление падает. Это объясняет, почему ветер свистит между зданиями и почему лодки, плывущие параллельно друг другу, часто сталкиваются друг с другом.Это пример закона сохранения энергии: если бы давление не падало, жидкость получала бы дополнительную энергию, втекая в узкое сечение, что нарушало бы один из самых основных законов физики.
Воздушный поток втягивает топливо, чтобы присоединиться к нему, что нам и нужно, но как
можно ли отрегулировать топливовоздушную смесь? Карбюратор имеет два поворотных
клапаны выше и ниже трубки Вентури. Вверху есть
клапан, называемый дросселем , который регулирует, сколько воздуха может проходить
в.Если дроссель закрыт, меньше воздуха проходит через трубу и
Вентури всасывает больше топлива, поэтому двигатель получает богатую топливом
смесь. Это удобно, когда двигатель холодный, при первом запуске и
работает довольно медленно. Под трубкой Вентури есть второй клапан.
называется дроссель . Чем больше дроссельная заслонка открыта, тем больше
воздух проходит через карбюратор и чем больше топлива он всасывает из
труба в сторону. Чем больше топлива и воздуха поступает в двигатель, тем
высвобождает больше энергии и производит больше мощности, и машина едет быстрее.Вот почему открытие дроссельной заслонки заставляет автомобиль ускоряться: это
эквивалентно дуновению костра, чтобы получить больше кислорода и сделать его
сгореть быстрее. Дроссель соединен с педалью акселератора
в машине или дроссель на руле мотоцикла.
Подача топлива в карбюратор немного сложнее, чем мы описывали до сих пор.
К топливной трубе прикреплен своего рода мини-топливный бак, называемый поплавковая камера (бачок с поплавком и клапаном внутри).Когда камера подает топливо в карбюратор,
уровень топлива падает, а вместе с ним падает и поплавок. Когда поплавок опускается ниже определенного уровня, он открывает клапан, пропуская топливо.
в камеру, чтобы заправить ее из основного бензобака. Как только камера заполняется, поплавок поднимается,
закрывает клапан, и подача топлива снова отключается. (
поплавковая камера работает как туалет, с поплавком
эффективно выполняет ту же работу, что и шаровой кран — клапан, который помогает наполнять туалет.
с нужным количеством воды после промывки.Что общего у автомобильных двигателей и туалетов? Больше, чем вы могли подумать!)
Итак, вот как все это работает:
- Воздух поступает в верхнюю часть карбюратора из воздухозаборника автомобиля, проходя через фильтр, очищающий его от мусора.
- При первом запуске двигателя воздушную заслонку (синего цвета) можно настроить так, чтобы она почти перекрывала верхнюю часть трубы, чтобы уменьшить количество поступающего воздуха (увеличивая содержание топлива в смеси, поступающей в цилиндры).
- В центре трубы воздух нагнетается через узкий изгиб, называемый трубкой Вентури.
Это ускоряет и приводит к падению его давления.
- Падение давления воздуха создает всасывание в топливной трубе (справа), всасывая топливо (оранжевый).
- Дроссель (зеленый) — это клапан, который поворачивается для открытия или закрытия трубы. Когда дроссельная заслонка открыта, в цилиндры поступает больше воздуха и топлива, поэтому двигатель производит больше мощности, и автомобиль едет быстрее.
- Смесь воздуха и топлива стекает в цилиндры.
- Топливо (оранжевое) подается из мини-топливного бака, называемого поплавковой камерой.
- Когда уровень топлива падает, поплавок в камере опускается и открывает верхний клапан.
- Когда клапан открывается, в камеру поступает больше топлива из основного бензобака. Это заставляет поплавок подниматься и снова закрывать клапан.
Узнать больше
На этом сайте
Книги
Для читателей постарше
Для юных читателей
- Автомобильная наука Ричарда Хаммонда.
Дорлинг Киндерсли, 2007. От материалов, из которых они сделаны, до того, как они рассекают воздух, эта книга объясняет науку, которая заставляет автомобили двигаться (9–12 лет).
Видео
- Карбюраторы — пояснения: это видео из журнала «Технические пояснения» охватывает почти ту же тему, что и моя статья, но рассказывает нам о том, что происходит. Он также распространяется на карбюраторы со второй трубкой Вентури.
- Карбюраторы поплавкового типа, объяснение Pimpinpenz. Хороший наглядный обзор поплавкового карбюратора с игольчатым клапаном.
Артикул
Патенты
Дополнительные технические подробности см. здесь:
- Патент США 382,585: Карбюратор Карла Бенца. 8 мая 1888 г. Оригинальное устройство смешивания топлива и воздуха, изобретенное в конце 19 века пионером автомобилестроения Карлом Бенцем.
- Патент США 1 520 261: Карбюратор Джорджа Ф. Риттера и др., Tillotson Manufacturing. 23 декабря 1924 года.
Типичный карбюратор начала 20 века.
- Патент США 1 938 497: Карбюратор Чарльза Н.Пог. 5 декабря 1933 г. Эта конструкция направлена на то, чтобы испарить больше топлива и обеспечить большую мощность двигателя.
- Патент США 4,501,709: Карбюратор Вентури с регулируемой скоростью, Тадахиро Ямамото и Тадаки Оота, Nissan. 26 февраля 1985 г. В карбюраторе этого более современного типа размер трубки Вентури автоматически изменяется для поддержания постоянного уровня всасывания.
Каталожные номера
- ↑ Газовые и нефтяные двигатели: Практический трактат о внутреннем сгорании Двигатель Уильяма Робинсона.Э. и Ф.Н. Спон, 1890, стр. 175.
Пожалуйста, НЕ копируйте наши статьи в блоги и другие веб-сайты
Статьи с этого веб-сайта зарегистрированы в Бюро регистрации авторских прав США. Копирование или иное использование зарегистрированных произведений без разрешения, удаление этого или других уведомлений об авторских правах и/или нарушение смежных прав может повлечь за собой серьезные гражданские или уголовные санкции.
Авторское право на текст © Chris Woodford 2009, 2021. Все права защищены. Полное уведомление об авторских правах и условия использования.
Подписывайтесь на нас
Сохранить или поделиться этой страницей
Нажмите CTRL + D, чтобы добавить эту страницу в закладки на будущее или рассказать о ней своим друзьям:
Цитировать эту страницу
Вудфорд, Крис. (2009/2021) Карбюраторы. Получено с https://www.explainthatstuff.com/how-carburetors-work.html. [Доступ (вставьте дату здесь)]
Больше информации на нашем веб-сайте…
Как работает карбюратор?
Как работает карбюратор? — Объясните этот материал РекламаКриса Вудфорда.Последнее обновление: 2 февраля 2021 г.
Топливо плюс воздух равно движению — это основная наука, стоящая за большинством транспортных средств. которые путешествуют по земле, по морю или по небу. Автомобили, грузовики и
автобусы превращают топливо в энергию, смешивая его с воздухом и сжигая в
металлические цилиндры внутри их двигателей. Точно сколько топлива и воздуха
потребности двигателя меняются от момента к моменту, в зависимости от того, как долго
он работает, как быстро вы едете и множество других
факторы. В современных двигателях используется система с электронным управлением.
называется впрыск топлива для регулирования топливно-воздушной смеси, так что это
ровно с минуты поворота ключа до момента переключения
двигатель снова выключается, когда вы достигаете пункта назначения.Но пока эти
были изобретены умные устройства, практически все двигатели полагались на
изобретательные устройства для смешивания топлива и воздуха, называемые карбюраторами (пишется
«карбюратор» в некоторых странах и часто сокращается до «карбюратора»). Что они собой представляют и как они работают? Давайте посмотрим поближе!
Работа: Коротко о карбюраторах: они добавляют топливо (красный) в воздух (синий), чтобы получилась смесь, подходящая для сгорания в цилиндрах. Цилиндры современных автомобилей более эффективно питаются системами впрыска топлива, которые потребляют меньше топлива и меньше загрязняют окружающую среду.Но вы по-прежнему найдете карбюраторы в двигателях старых автомобилей и мотоциклов, а также в компактных двигателях газонокосилок и бензопил.
Как двигатели сжигают топливо
Двигатели — механические штуки, но они тоже химические вещества: они разработан вокруг химической реакции, называемой сгоранием : когда вы сжигаете топливо в воздухе, вы выделяете тепловую энергию и производите углерод диоксид и вода как продукты жизнедеятельности. Для эффективного сжигания топлива вам должны использовать много воздуха. Это в равной степени относится и к автомобильному двигателю. что касается свечи, костра на открытом воздухе, угля или дрова в чьем-то доме.
С костром вам никогда не придется
беспокойтесь о том, что у вас слишком много или слишком мало воздуха. При пожарах в помещении не хватает воздуха и
гораздо важнее. Слишком мало кислорода вызовет пожар в помещении (или
даже устройство для сжигания топлива, такое как газовая печь центрального отопления (котел), чтобы
производят опасные загрязнения воздуха, в том числе токсичные
угарный газ.
Artwork: Теоретически автомобильному двигателю требуется в 14,7 раз больше воздуха, чем топлива, чтобы топливовоздушная смесь сгорала должным образом.Это называется стехиометрической смесью и состоит из 94 процентов воздуха и 6 процентов топлива. На практике соотношение может быть другим.
С автомобильным двигателем немного сложнее. Если у тебя есть
достаточно атомов кислорода, чтобы сжечь все ваши атомы топлива, это называется
стехиометрическая смесь . (Стехиометрия является частью химии,
химический эквивалент проверки того, что у вас достаточно каждого ингредиента
прежде чем приступить к приготовлению пищи по рецепту.) В случае автомобильного двигателя,
соотношение обычно составляет около 14. 7 частей воздуха на 1 часть топлива (хотя это
зависит от того, из чего именно состоит топливо).
Слишком много воздуха и недостаточно топлива означает, что двигатель горит
«бедный», когда слишком много топлива и недостаточно воздуха называется
сжигание «богатых». Немного избыточное количество воздуха (слегка обедненная смесь) даст лучшую экономию топлива, а небольшое количество воздуха (слегка богатая смесь) даст лучшую производительность. Иметь слишком много воздуха так же плохо, как и слишком
маленький; оба вредны для двигателя по-разному.
«Карбюратор называют «Сердцем» автомобиля, и нельзя ожидать, что двигатель будет работать правильно, выдавать необходимую мощность или работать плавно, если его «сердце» не выполняет свои функции должным образом.»
Эдвард Кэмерон, The New York Times, 1910
Что такое карбюратор?
Бензиновые двигатели рассчитаны на всасывание точно необходимого количества воздуха, поэтому
топливо сгорает правильно, независимо от того, запускается ли двигатель холодным или
греется на максимальной скорости. Правильный подбор топливно-воздушной смеси
работа умного механического устройства, называемого карбюратором :
трубка, которая пропускает воздух и топливо в двигатель через клапаны, смешивая
их вместе в разных количествах, чтобы удовлетворить широкий спектр различных
условия вождения.
Вы можете подумать, что слово «карбюратор» довольно странное, но оно происходит от глагола «карбюратор». Это химический термин, означающий обогащение газа путем соединения его с углеродом. или углеводороды. Итак, технически карбюратор — это устройство, которое насыщает воздух (газ) топливом. (углеводород).
Кто изобрел карбюратор?
Карбюраторы существуют с конца 19-го века.
века, когда они были впервые разработаны пионером автомобилестроения (и
основатель Mercedes) Карл Бенц (1844–1929). Раньше были
попытки «карбюрации» другими способами. Например, французский пионер двигателей
Жозеф Этьен Ленуар (1822–1900) первоначально использовал вращающийся цилиндр.
с прикрепленными губками, которые погружались в топливо при повороте,
вынимая его из контейнера и перемешивая с воздухом. [1]
На приведенной ниже диаграмме, которую я раскрасил для облегчения понимания, показан исходный Карбюратор Benz 1888 года выпуска; основной принцип работы (объясненный в рамке ниже) остается прежним и по сей день.
Иллюстрация: Очень упрощенная схема оригинального карбюратора Карла Бенца из его патент 1888 г. Топливо из бака (синий, D) поступает в то, что он назвал генератором (зеленый, A). внизу, где он испаряется. Пары топлива проходят вверх по серой трубе и встречаются с поступающим воздухом. вниз по той же трубе, которая входит из атмосферы через перфорацию вверху.Воздух и топливо смешиваются в красной камере (F), затем проходят через клапан (бирюзовый, G) в цилиндр H, где они сжечь, чтобы сделать власть. Работа из патента США 382 585: Карбюратор Карла Бенца. 8 мая 1888 г., любезно предоставлено Управлением по патентам и товарным знакам США.
Как работает карбюратор?
Фото: Типичный карбюратор не на что смотреть! Фото Дэвида Хоффмана предоставлено
ВМС США.
Карбюраторы сильно различаются по конструкции и сложности. Самый простой из возможных по сути большая вертикальная воздушная труба над цилиндрами двигателя с горизонтальная топливная труба, соединенная с одной стороны.Когда воздух течет вниз трубы, он должен проходить через узкий изгиб посередине, который заставляет его ускоряться и заставляет его давление падать. Это перегнулось секция называется Вентури . Падение давления воздуха создает эффект всасывания, который всасывает воздух через топливную трубку в сторона.
Иллюстрация: Эффект Вентури: когда жидкость течет в более узкое пространство, ее скорость увеличивается, но давление падает. Это объясняет, почему ветер свистит между зданиями и почему лодки, плывущие параллельно друг другу, часто сталкиваются друг с другом.Это пример закона сохранения энергии: если бы давление не падало, жидкость получала бы дополнительную энергию, втекая в узкое сечение, что нарушало бы один из самых основных законов физики.
Воздушный поток втягивает топливо, чтобы присоединиться к нему, что нам и нужно, но как
можно ли отрегулировать топливовоздушную смесь? Карбюратор имеет два поворотных
клапаны выше и ниже трубки Вентури. Вверху есть
клапан, называемый дросселем , который регулирует, сколько воздуха может проходить
в.Если дроссель закрыт, меньше воздуха проходит через трубу и
Вентури всасывает больше топлива, поэтому двигатель получает богатую топливом
смесь. Это удобно, когда двигатель холодный, при первом запуске и
работает довольно медленно. Под трубкой Вентури есть второй клапан.
называется дроссель . Чем больше дроссельная заслонка открыта, тем больше
воздух проходит через карбюратор и чем больше топлива он всасывает из
труба в сторону. Чем больше топлива и воздуха поступает в двигатель, тем
высвобождает больше энергии и производит больше мощности, и машина едет быстрее.Вот почему открытие дроссельной заслонки заставляет автомобиль ускоряться: это
эквивалентно дуновению костра, чтобы получить больше кислорода и сделать его
сгореть быстрее. Дроссель соединен с педалью акселератора
в машине или дроссель на руле мотоцикла.
Подача топлива в карбюратор немного сложнее, чем мы описывали до сих пор. К топливной трубе прикреплен своего рода мини-топливный бак, называемый поплавковая камера (бачок с поплавком и клапаном внутри).Когда камера подает топливо в карбюратор, уровень топлива падает, а вместе с ним падает и поплавок. Когда поплавок опускается ниже определенного уровня, он открывает клапан, пропуская топливо. в камеру, чтобы заправить ее из основного бензобака. Как только камера заполняется, поплавок поднимается, закрывает клапан, и подача топлива снова отключается. ( поплавковая камера работает как туалет, с поплавком эффективно выполняет ту же работу, что и шаровой кран — клапан, который помогает наполнять туалет. с нужным количеством воды после промывки.Что общего у автомобильных двигателей и туалетов? Больше, чем вы могли подумать!)
Итак, вот как все это работает:
- Воздух поступает в верхнюю часть карбюратора из воздухозаборника автомобиля, проходя через фильтр, очищающий его от мусора.
- При первом запуске двигателя воздушную заслонку (синего цвета) можно настроить так, чтобы она почти перекрывала верхнюю часть трубы, чтобы уменьшить количество поступающего воздуха (увеличивая содержание топлива в смеси, поступающей в цилиндры).
- В центре трубы воздух нагнетается через узкий изгиб, называемый трубкой Вентури. Это ускоряет и приводит к падению его давления.
- Падение давления воздуха создает всасывание в топливной трубе (справа), всасывая топливо (оранжевый).
- Дроссель (зеленый) — это клапан, который поворачивается для открытия или закрытия трубы. Когда дроссельная заслонка открыта, в цилиндры поступает больше воздуха и топлива, поэтому двигатель производит больше мощности, и автомобиль едет быстрее.
- Смесь воздуха и топлива стекает в цилиндры.
- Топливо (оранжевое) подается из мини-топливного бака, называемого поплавковой камерой.
- Когда уровень топлива падает, поплавок в камере опускается и открывает верхний клапан.
- Когда клапан открывается, в камеру поступает больше топлива из основного бензобака. Это заставляет поплавок подниматься и снова закрывать клапан.
Узнать больше
На этом сайте
Книги
Для читателей постарше
Для юных читателей
- Автомобильная наука Ричарда Хаммонда.Дорлинг Киндерсли, 2007. От материалов, из которых они сделаны, до того, как они рассекают воздух, эта книга объясняет науку, которая заставляет автомобили двигаться (9–12 лет).
Видео
- Карбюраторы — пояснения: это видео из журнала «Технические пояснения» охватывает почти ту же тему, что и моя статья, но рассказывает нам о том, что происходит. Он также распространяется на карбюраторы со второй трубкой Вентури.
- Карбюраторы поплавкового типа, объяснение Pimpinpenz. Хороший наглядный обзор поплавкового карбюратора с игольчатым клапаном.
Артикул
Патенты
Дополнительные технические подробности см. здесь:
- Патент США 382,585: Карбюратор Карла Бенца. 8 мая 1888 г. Оригинальное устройство смешивания топлива и воздуха, изобретенное в конце 19 века пионером автомобилестроения Карлом Бенцем.
- Патент США 1 520 261: Карбюратор Джорджа Ф. Риттера и др., Tillotson Manufacturing. 23 декабря 1924 года. Типичный карбюратор начала 20 века.
- Патент США 1 938 497: Карбюратор Чарльза Н.Пог. 5 декабря 1933 г. Эта конструкция направлена на то, чтобы испарить больше топлива и обеспечить большую мощность двигателя.
- Патент США 4,501,709: Карбюратор Вентури с регулируемой скоростью, Тадахиро Ямамото и Тадаки Оота, Nissan. 26 февраля 1985 г. В карбюраторе этого более современного типа размер трубки Вентури автоматически изменяется для поддержания постоянного уровня всасывания.
Каталожные номера
- ↑ Газовые и нефтяные двигатели: Практический трактат о внутреннем сгорании
Двигатель Уильяма Робинсона.Э. и Ф.Н. Спон, 1890, стр.
175.
Пожалуйста, НЕ копируйте наши статьи в блоги и другие веб-сайты
Статьи с этого веб-сайта зарегистрированы в Бюро регистрации авторских прав США. Копирование или иное использование зарегистрированных произведений без разрешения, удаление этого или других уведомлений об авторских правах и/или нарушение смежных прав может повлечь за собой серьезные гражданские или уголовные санкции.
Авторское право на текст © Chris Woodford 2009, 2021. Все права защищены. Полное уведомление об авторских правах и условия использования.
Подписывайтесь на нас
Сохранить или поделиться этой страницей
Нажмите CTRL + D, чтобы добавить эту страницу в закладки на будущее или рассказать о ней своим друзьям:
Цитировать эту страницу
Вудфорд, Крис. (2009/2021) Карбюраторы. Получено с https://www.explainthatstuff.com/how-carburetors-work.html. [Доступ (вставьте дату здесь)]
Больше информации на нашем веб-сайте.
![](/800/600/https/fs00.infourok.ru/images/doc/259/263788/3/img4.jpg)
Как работает карбюратор?
Посмотрите видео, чтобы лучше рассмотреть эти детали.
Карбюратор работает «нормально» на полном газу. В этом случае дроссельная заслонка параллельна длине трубы, позволяя максимальному потоку воздуха через карбюратор. Поток воздуха создает хороший вакуум в трубке Вентури, и этот вакуум всасывает дозированное количество топлива через жиклер. Вы можете увидеть пару винтов в правой верхней части карбюратора на фото 1. Один из этих винтов (обозначенный «Привет» на корпусе цепной пилы) контролирует, сколько топлива поступает в трубку Вентури при полном газе.
При работе двигателя на холостом ходу дроссельная заслонка почти закрыта (положение дроссельной заслонки на фотографиях — положение холостого хода).Воздуха, проходящего через трубку Вентури, недостаточно для создания вакуума. Однако на задней стороне дроссельной заслонки имеется сильный вакуум (поскольку дроссельная заслонка ограничивает поток воздуха). Если в боковой части трубки карбюратора сразу за дроссельной заслонкой просверлить крошечное отверстие, топливо может втягиваться в трубку за счет вакуума дроссельной заслонки. Это крошечное отверстие называется холостым жиклером . Другой винт пары, показанный на фото 1, помечен «Lo» и регулирует количество топлива, которое проходит через жиклер холостого хода.
Винты Hi и Lo представляют собой простые игольчатые клапаны. Поворачивая их, вы позволяете большему или меньшему количеству топлива проходить мимо иглы. Когда вы регулируете их, вы напрямую контролируете, сколько топлива проходит через жиклер холостого хода и главный жиклер.
Когда двигатель холодный и вы пытаетесь запустить его с помощью шнура, двигатель работает на очень низких оборотах. К тому же он холодный, поэтому для запуска нужна очень богатая смесь. Здесь в дело вступает дроссельная заслонка. При активации дроссельная заслонка полностью закрывает трубку Вентури (см. это видео о дроссельной заслонке, чтобы увидеть ее в действии).Если дроссельная заслонка широко открыта, а трубка Вентури закрыта, вакуум двигателя всасывает много топлива через главный жиклер и жиклер холостого хода (поскольку конец трубки карбюратора полностью закрыт, весь вакуум двигателя уходит на прокачку топлива через жиклер). струи). Обычно эта очень богатая смесь позволяет двигателю запуститься один или два раза или работать очень медленно. Если вы затем откроете воздушную заслонку, двигатель заработает нормально.
Первоначально опубликовано: 10 мая 2000 г.
Как работает карбюратор в топливной системе?
Карбюратор отвечает за смешивание бензина и воздуха в нужном количестве и подачу этой смеси в цилиндры.Хотя они не используются в новых автомобилях, карбюраторы доставляют топливо в двигатели каждого транспортного средства, от легендарных гоночных автомобилей до роскошных автомобилей высшего класса. Они использовались в NASCAR до 2012 года, и многие любители классических автомобилей используют автомобили с карбюратором каждый божий день. С таким количеством несгибаемых энтузиастов карбюраторы должны предложить что-то особенное для тех, кто любит автомобили.
Как работает карбюратор?
Карбюратор использует разрежение, создаваемое двигателем, для подачи воздуха и топлива в цилиндры. Эта система использовалась так долго из-за ее простоты. Дроссель может открываться и закрываться, позволяя большему или меньшему количеству воздуха поступать в двигатель. Этот воздух проходит через узкое отверстие, называемое трубкой Вентури . Вакуум является результатом потока воздуха, необходимого для поддержания работы двигателя.
Чтобы понять, как работает трубка Вентури, представьте реку, текущую нормально. Эта река движется с постоянной скоростью, и глубина очень постоянна на всем протяжении. Если в этой реке есть узкий участок, вода должна будет ускориться, чтобы тот же объем прошел на той же глубине.Как только река вернется к исходной ширине после узкого места, вода все равно будет пытаться сохранить ту же скорость. Это заставляет воду с более высокой скоростью на дальней стороне узкого места притягивать воду, приближающуюся к узкому месту, создавая вакуум.
Благодаря трубке Вентури внутри карбюратора достаточно вакуума, чтобы воздух, проходящий через него, стабильно вытягивал газ из жиклера . Находящийся внутри трубки Вентури жиклер представляет собой отверстие, в котором топливо из поплавковой камеры может смешиваться с воздухом перед поступлением в цилиндры.Поплавковая камера вмещает небольшое количество топлива, как резервуар, и позволяет топливу легко поступать к жиклеру по мере необходимости. Когда дроссельная заслонка открывается, в двигатель всасывается больше воздуха, принося с собой больше топлива, что увеличивает мощность двигателя.
Основная проблема с этой конструкцией заключается в том, что дроссельная заслонка должна быть открыта, чтобы двигатель мог получить топливо. Дроссельная заслонка закрыта на холостом ходу, поэтому жиклер холостого хода позволяет небольшому количеству топлива поступать в цилиндры, чтобы двигатель не заглох.Другие небольшие проблемы включают избыток паров топлива, выходящий из поплавковой камеры (камер).
В топливной системе
Карбюраторы выпускались различных форм и размеров на протяжении многих лет. Небольшие двигатели могут использовать только один карбюратор с одной форсункой для подачи топлива в двигатель, в то время как более крупные двигатели могут использовать до двенадцати форсунок, чтобы оставаться в движении. Трубка, содержащая трубку Вентури и жиклер, называется стволом , хотя этот термин обычно используется только в отношении многоствольных карбюраторов .
в прошлом были большим преимуществом для автомобилей с такими вариантами, как конфигурации с 4 или 6 цилиндрами. Чем больше стволов, тем больше воздуха и топлива могло попасть в цилиндры. В некоторых двигателях даже использовалось несколько карбюраторов.
Спортивные автомобили часто поставлялись с завода с одним карбюратором на цилиндр, к большому разочарованию их механиков. Все это нужно было настраивать индивидуально, а темпераментные (обычно итальянские) силовые установки были особенно чувствительны к любым недостаткам настройки.Они также имели тенденцию довольно часто нуждаться в настройке. Это основная причина, по которой система впрыска топлива была впервые популяризирована в спортивных автомобилях.
Куда делись все карбюраторы?
С 1980-х годов производители постепенно отказываются от карбюраторов в пользу впрыска топлива. Оба выполняют одну и ту же работу, но сложные современные двигатели просто эволюционировали по сравнению с карбюраторами, и на смену им пришел гораздо более точный (и программируемый) впрыск топлива. На это есть несколько причин:
Впрыск топлива может подавать топливо непосредственно в цилиндр, хотя иногда используется корпус дроссельной заслонки, позволяющий одной или двум форсункам подавать топливо в несколько цилиндров.
Работа на холостом ходу сложна для карбюратора, но очень проста для топливных форсунок. Это связано с тем, что система впрыска топлива может просто добавлять небольшое количество топлива в двигатель, чтобы он продолжал работать, а у карбюратора дроссельная заслонка закрыта на холостом ходу.
Жиклер холостого хода необходим, чтобы карбюраторный двигатель не заглох при закрытой дроссельной заслонке.
Впрыск топлива более точен и расходует меньше топлива. Из-за этого также меньше паров газа при впрыске топлива, поэтому меньше вероятность возгорания.
Несмотря на то, что карбюраторы устарели, они занимают важное место в автомобильной истории и работают чисто механически и продуманно. Работая с карбюраторными двигателями, энтузиасты могут получить практические знания о том, как воздух и топливо подаются в двигатель для воспламенения и обеспечения движения.
Как работает карбюратор?
Карбюратор — это высокочувствительный, точный прибор, предназначенный для смешивания топлива и воздуха в правильном соотношении в довольно динамичном рабочем диапазоне двигателя внутреннего сгорания.
Их также, хотите верьте, хотите нет, очень легко понять. Хотя я не скажу, что карбюраторы и их тюнинг (подгонка карбюратора под конкретный двигатель и даже конкретный сценарий использования) просты, но принцип их работы довольно прост, и обслуживание, как правило, легко выполнить, если конструкция карбюратора работоспособна. и есть достаточный доступ к нему. Карбюраторы довольно изящны, потому что мы все еще живем в эпоху, когда они используются (и, возможно, самые сложные и лучшие конструкции карбюраторов — это все, что осталось в игре), но из-за ограничений на выбросы они больше не разрабатываются.В этом отношении они своего рода живое ископаемое.
Чтобы наилучшим образом объяснить конструкцию и усовершенствование карбюратора, я сделаю то, что обычно делаю: верну вас в более ранние времена, чтобы понять простейшую форму темы, которую мы рассматриваем, а затем мы перейдем ко всем подробностям. большие важные вехи. Я также добавлю несколько фактов, чтобы это не было сухим.
Вот основная идея Вентури. Если вы понимаете это, вы в значительной степени разобрались с углеводами.Иллюстрация RevZilla.
Принцип работы
Как и многие части мотоцикла, устройство смешивания воздуха и топлива появилось в результате исследований, проведенных в другом столетии. В 1730-х годах Даниэль Бернулли, швейцарский математик и физик, обнаружил, что давление воздуха уменьшается с увеличением скорости. Так получилось, что хороший, последовательный способ заставить этот сценарий произойти — это пропустить воздух через ограниченный участок трубы; воздух ускоряется, и давление падает.Это было обнаружено примерно в 1797 году итальянским физиком по имени Джованни Вентури. Он спроектировал трубку с гораздо меньшим входным отверстием при этом сужении в этой области низкого давления. Это входное отверстие позволяет трубе втягивать жидкость в поток воздуха.
Вот и все в двух словах. Вот что такое углевод и что он делает. Это трубка, по которой течет воздух с особым образом расположенными пустотами, через которые в двигатель подается очень определенное количество топлива. А в идеале еще и эмульгирует топливо с воздухом — распыление.(Важно знать, что жидкое топливо воспламеняется гораздо труднее, чем пары топлива, взвешенные в воздухе.)
Это съемная трубка Вентури от карбюратора Лангсенкампа-Линкерта, которую можно найти на многих антикварных продуктах Harley-Davidson. Видите место, где диаметр уменьшается? Фото Лемми.
Поэтому, когда вы «даете газу», вы вообще ничего не делаете с топливом. Нет прямой связи между вашей правой рукой и бензином. То, что вы делаете, на самом деле изливает на воздух .Вы впускаете больше воздуха в свой двигатель — так уж получилось, что из-за эффекта Вентури больший перепад давления воздуха позволяет ему нести с собой больше топлива.
Если вы не продвинетесь дальше в этой статье, вы в значительной степени поймете, что делают углеводы и как они это делают. Но, как и все механические части в мото, были очень интересные эволюции и улучшения. История и эволюция также помогают объяснить, почему вы не найдете старинный Шеблер из раннего Харлея, свисающий с дрэг-байка.
Проект
Прежде чем мы начнем, вы должны знать, что все карбюраторы можно классифицировать по тому, как воздух входит и выходит из карбюратора, когда он ориентирован в установленном положении. Таким образом, карбюратор с нисходящим потоком, который вы можете найти на маслкаре V8, имеет воздух, который входит сверху и движется вниз, собирая топливо, где они вместе попадают в коллектор, а затем в камеру сгорания.
В мотоциклетном мире почти каждый карбюратор имеет боковую тягу.Я уверен, что какой-нибудь зоркий читатель назовет непонятную модель с карбюратором с восходящим или нисходящим потоком, о котором я не могу вспомнить, но шансы превосходны, если вы видите мотоциклетный карбюратор, это блок с боковой тягой. Это связано в первую очередь с ограничениями по упаковке, а также взаимосвязано с попыткой сохранить длину впускного патрубка как можно более близкой к одинаковой на многоцилиндровых мотоциклах.
Дроссель, пережиток ушедшей эпохи. Эта заслонка закрывается вручную, чтобы ограничить поток воздуха в конце карбюратора от двигателя.Это позволяет двигателю «всасывать» его, поэтому топливо может легко поступать, но ограничение воздуха делает двигатель очень богатым, облегчая запуск. Фото Лемми.
Части карбюратора
У большинства углеводов есть чаша, область, где топливо как бы висит. Некоторые из них удалены в сторону, но у большинства есть буквальная чаша, которая отделяется от корпуса карбюратора. Там есть поплавок, который работает так же, как поплавок в вашем горшке. Он управляет иглой, которая садится на элемент, который, что вполне логично, называется седлом.
Чаша карбюратора. Фото Лемми.
Большинство мотоциклетных карбюраторов питаются самотеком (бак всегда устанавливается над карбюратором, если только нет топливного насоса), поэтому поплавок, игла и седло работают вместе, чтобы подавать топливо в карбюратор по мере необходимости, не переполняя чашу.
Черный элемент здесь — это поплавок, а к нему подсоединена игла, которая плотно прилегает к его гнезду. Медные части, находящиеся не в фокусе, — это струи. Самая верхняя латунная деталь – это пилотный жиклер, а нижняя – основная.Фото Лемми.
В чаше вы также можете увидеть форсунки, ведущие в основной корпус карбюратора. Обычно это сменные латунные детали с просверленными отверстиями очень точного размера. Они часто бывают разных размеров для целей настройки. Размер отверстия влияет на количество топлива в воздушно-топливной смеси.
Вот углеводный слайд. Обратите внимание, что вырез (выемка внизу слева) виден. Форма выреза и высота могут быть изменены, чтобы изменить реакцию на холостой ход.Эта заслонка аналогична дроссельной заслонке в более ранних карбюраторах. Фото Лемми.
Вы также можете увидеть иглы в карбюраторе. В зависимости от карбюратора они могут быть топливными иглами, воздушными иглами или «игольчатыми форсунками». Они выглядят как настоящая игла (хотя и толще) и отличаются от иглы, которая крепится к поплавку. Разве это не глупо?
В корпусе карбюратора вы можете увидеть ползун, который держит иглу жиклера, или вы можете увидеть диск дроссельной заслонки, который может двигаться при повороте дроссельной заслонки (а может и нет, в зависимости от типа вашего карбюратора). ) и вы можете увидеть еще один диск, воздушную заслонку.Не все карбюраторы имеют все эти детали. Почему? Что ж, это хороший переход к тому, как углеводы эволюционировали и чем они отличаются друг от друга.
Давным-давно, когда
Я собираюсь описать следующее с точки зрения возрастающей сложности, и вообще говоря, вещи двигались в этом порядке с точки зрения сложности. Улучшения производились по очень разным графикам, но это примерно прогресс — просто они были реализованы в разное время разными производителями карбюраторов и велосипедов, и некоторые шаги были пропущены по пути.
На заре мотоциклетного спорта углеводы были похожи на ту базовую единицу, которую мы только что описали выше. Двигатели были сырыми, поэтому карбюраторы тоже могли быть такими. Степень сжатия была низкой, металлургия была плохой, что ограничивало скорость двигателя, технология уплотнения была чем-то средним между доисторическими и несуществующими.
В некоторых ранних мотоциклах использовался атмосферный впускной клапан. По сути, впускной клапан удерживался закрытым с помощью пружины, как и обычный современный клапан, но пружина была намного слабее.Однако клапан не открывался механически, как в современных двигателях. Вместо этого движение поршня вниз создавало достаточное отрицательное давление, чтобы преодолеть слабую пружину и допустить поступающий воздушно-топливный заряд в камеру сгорания. Когда всасывание уменьшилось, клапан закрылся под давлением пружины. Это не имеет прямого отношения к карбюраторам, но об этом чуть позже в этой статье, так что держите эту мысль, хорошо? Через несколько лет впускные клапаны стали стандартными, которые мы знаем сейчас, открываясь кулачком и подъемником с хорошей сильной пружиной, чтобы закрыть их обратно.
По мере того, как двигатели становились более производительными, стало понятно, что более плавная работа и лучший ход могут быть достигнуты за счет более точного контроля подачи топлива. Двигатель на холостом ходу, резко поворачиваемый дроссель от водителя, требующего ускорения, и двигатель, работающий на полных оборотах, — все они имеют очень разные потребности в подаче топлива.
Ранние велосипедные углеводы имели две цепи: цепь холостого хода и цепь высокой скорости. «Контур» можно рассматривать как часть дроссельной заслонки, которой управляет этот конкретный топливный тракт.Таким образом, схема холостого хода на раннем карбюраторе может контролировать холостой ход примерно до 25 процентов дроссельной заслонки, а схема высокой скорости может справиться с остальным. Почти в каждом карбюраторе есть некоторое перекрытие и слив в отношении того, какая цепь обслуживает какую часть дроссельной заслонки. Изменение чего-то в одной цепи может изменить что-то в другой, и часто такие детали, как регулируемые воздухозаборники, могут перемещать точку перехода, чтобы избежать грубых или неустойчивых изменений цепи.
Хорошим примером этого является размер Вентури.Например, ранние карбюраторы Harley Linkert-Langsenkamp очень похожи на карбюраторы даже для двигателей с достаточно разной мощностью. Поток воздуха регулировался «бабочкой» или дроссельным диском, названным так потому, что в работе он напоминает взмах крыла бабочки. Чтобы учесть необходимость использования одного корпуса со многими рабочими объемами, для Linkerts были доступны разные трубки Вентури, и они были более или менее отличительным фактором между моделями карбюратора.
Проблема, однако, заключается в том, что данный размер трубки Вентури на самом деле оптимален только для данной скорости потока, что соответствует одной частоте вращения двигателя.Это нормально для культиватора или ему подобного, в котором используется двигатель, работающий на фиксированной скорости. Они достаточно гибкие, но идеальной ситуацией были бы трубки Вентури разных размеров для различных ситуаций с дроссельной заслонкой. Введите слайд-углевод.
Скользящий карбюратор. Фото Лемми.
Карбюраторы Slide отличаются от карбюраторов Butterfly тем, что в них не используется дроссельная заслонка, а вместо этого используется круглый или плоский «ползун», который работает аналогично гильотине. Этот слайд поднимается тросом дроссельной заслонки, когда водитель «закручивает фитиль».
Углеводы Slide имеют несколько преимуществ по сравнению с углеводами типа «бабочка». Во-первых, и это наиболее важно, размер трубки Вентури увеличивается при открытии дроссельной заслонки. Он мал при маленьком открытии дроссельной заслонки и становится больше при большом открытии. Некоторые люди до сих пор называют эти углеводы «переменными вентури».
Это установка бабочки. Многие ранние карбюраторы используют эту конструкцию клапана. Вал, на котором установлен диск, вращается примерно на 90 градусов. Это положение будет широко открытым дросселем.Йи-ха! Фото Лемми.
У скользящих карбюраторов также есть то преимущество, что у них нет изнашивающихся втулок вала дроссельной заслонки. Изношенные втулки действительно могут затруднить поддержание разумных оборотов холостого хода и смеси. Кроме того, поскольку этот дроссельный вал и дроссельная заслонка не занимают места в горловине карбюратора, скользящий карбюратор при полностью открытой дроссельной заслонке не имеет внутренних препятствий на пути впуска.
Помните, мы говорили о схемах ранее? Одним из способов улучшения карбюраторов было добавление цепей.С одной стороны, дополнительные схемы обеспечивали более точную и точную настройку. Обратной стороной этого, как и во всем, что имеет повышенную настраиваемость, является повышенная сложность, что дает возможность настраивать более неправильно, чем когда-либо прежде.
Вот отверстие, просверленное в реактивном самолете. Должно быть довольно легко понять, почему вязкое топливо или грязный карбюратор могут помешать запуску и работе мотоцикла. Фото Лемми.
Одна схема, которая появилась и встречается на большинстве скользящих карбюраторов, — это струйная игла, о которой мы говорили ранее.Вместо того, чтобы просто иметь схему холостого хода и схему «все остальное», дроссельная заслонка была разделена на три части. На большинстве ползунковых карбюраторов реактивная игла регулирует примерно от одной восьмой дроссельной заслонки до полного открытия, при этом пилот управляет работой на холостом ходу и вне холостого хода, а основная схема управляет большинством больших открытий дроссельной заслонки, обычно с некоторой помощью со стороны водителя. реактивная игла.
Реактивная игла. Обратите внимание на различные положения зажима, а также на очень аккуратный конус струйной иглы.Фото Лемми.
Струйные иглы часто имеют несколько положений для удерживающих зажимов. Чем выше в ползунке поднимается игла жиклера (обойма перемещается в сторону заостренного конца жиклера иглы), тем богаче смесь можно сделать в средней части дроссельной заслонки. Это обрабатывает нижний конец среднего диапазона. Верхний конец обрабатывается самим конусом иглы. Длинный, плавный конус будет более тонким, когда дроссельная заслонка открыта, чем короткая, агрессивная, когда игла движется вверх вместе с ползунком.
Интересно, что такие вещи, как игольчатые форсунки с несколькими положениями, начали исчезать в более поздних карбюраторах не потому, что они плохо работали, а из-за ограничений на выбросы вынуждали производителей делать свои карбюраторы «защищенными от несанкционированного доступа». Именно поэтому винты смесителя холостого хода часто устанавливаются на заводе и закрываются латунными заглушками. Вы все еще можете получить доступ к регулировочному винту, вам просто нужно удалить запрессованную заглушку, что обычно квалифицируется как вмешательство в устройство контроля выбросов.Что-то вроде Уловки-22, да?
Еще одним нововведением стало добавление ускорительного насоса, который не является отдельной схемой, а предназначен для решения очень специфической задачи: устранить заедание, которое обычно возникает при быстром открытии дроссельной заслонки. Это спотыкание обычно происходит из-за того, что поток воздуха резко увеличивается, а топливо отстает. Ускорительные насосы — это, по сути, крошечный топливный насос с механическим приводом, который управляется дроссельной заслонкой, и обычно они открываются только при определенных обстоятельствах.Если вы когда-нибудь слышали, как кто-то говорит о «помповых» углеводах, это то, на что они ссылаются.
Они настроены так, что мягкого открытия дроссельной заслонки недостаточно, чтобы привести их в действие, но когда дроссельная заслонка резко открывается, в карбюратор подается хорошая порция топлива. (В большинстве случаев они могут быть настроены, так что размер «выстрела» можно настроить так, чтобы только удалить трясину, но не переусердствовать.)
С течением времени на карбюраторах начала проявляться еще одна регулировка: выпуск воздуха.Регулируемые воздухозаборники в основном помогают ускорить или отсрочить переход с одного контура на другой, опять же расширяя регулируемость карбюратора, к лучшему или к худшему.
Это карбюратор CV. Видишь ту огромную крышку сверху? Это твоя наводка. Фото Лемми.
Современная эпоха
Ну, этот подзаголовок немного неверен. Несмотря на то, что некоторые мотоциклы с карбюратором все еще сходят с заводов, их становится все меньше, и они обычно встречаются в пережитках.Таким образом, мы можем определить «современный» здесь примерно как 1990-е годы.
Введите постоянную скорость или CV, carb. Карбюраторы CV существуют уже давно, но они стали очень популярными в 1990-х годах из-за их способности производить чистый карбюратор при минимизации избытка несгоревших углеводородов, которые обеспечивали менее точные устройства распыления топлива.
А это слайд резюме. (Звучит как аккуратный танец, не так ли?) Это более поздняя единица в стиле диафрагмы. Видите, почему вершины углеводов такие большие? Фото Лемми.
Фактически карбюратор CV поднимает затвор не механически, а пневматически. Карбюратор разделяет функцию подъема слайда, используя трос дроссельной заслонки для открытия и закрытия бабочки в горловине карбюратора, а не путем непосредственного подъема слайда. Затвор, теперь закрытый диафрагмой и закрытый слабой пружиной, открывается относительно разрежения в двигателе. Таким образом, заслонка карбюратора управляется двигателем. Райдер действительно косвенно контролирует воздушный поток.
— Но Лем! Я слышу, как ты говоришь. «Разве это не ухудшит приемистость?» да. Да, это было бы. Но это было неплохо, особенно когда в ход пускался ускорительный насос. Это было лучше для окружающей среды, потому что не было всех этих богатых всплесков (численно низкое соотношение воздух / топливо), которые происходили каждый раз, когда гонщик получал удовольствие от газа. Вместо этого произошло приятное равномерное повышение оборотов двигателя способом, который был менее вредным для окружающей среды. Тем не менее, вы, как правило, не увидите карбюраторы CV (обычно идентифицируемые по очень большим квадратным или круглым вершинам, в которых находятся диафрагмы) на гоночных или соревновательных машинах.(Пойдите, посмотрите на современный двухтактный мотоцикл для бездорожья!) Вместо этого их использование было отнесено в основном к более повседневным стандартам и пригородным мотоциклам. Карбюраторы CV, как вы уже догадались, очень экономны на топливе. То, что они теряют в приемистости и производительности, они возвращают в эффективности и экономичности.
И в этот момент я верну вас к той мысли, которую я просил вас задержать ранее. Помните атмосферные клапаны? В основном они полагались на то, что вакуум двигателя преодолевает слабую пружину, чтобы впустить воздух и топливо в двигатель.Звучит знакомо? Дизайнеры в основном взяли тот же принцип, соединив его с идеей старого Вентури, и создали самые технологически продвинутые и экологически эффективные карбюраторы массового производства, когда-либо устанавливавшиеся на серийные мотоциклы.
Закат
За исключением оставшихся мотоциклов, которые все еще соответствуют законам о выбросах, таких как Suzuki S40 Boulevard или Honda XR650L (кстати, оба используют CV) и гоночных машин, карбюраторы в значительной степени ушли в прошлое, вытесненные впрыском топлива.
Почему, спросите вы? Ну, они легче для окружающей среды. Впрыск топлива отключает подачу топлива в условиях высокого вакуума и низкой нагрузки. (Подумайте о том, когда вы едете под уклон на пониженной передаче с закрытой дроссельной заслонкой.) Карбюратор по своей конструкции продолжает подавать много топлива во впускной тракт. Таким образом, впрыск топлива немного более эффективен в этом отношении.
Однако более важная причина заключается в том, что карбюратор загрязняет окружающую среду намного больше, чем FI, но, вероятно, не так, как вы думаете.Поскольку карбюраторы не являются системами под давлением, как система впрыска топлива, топливо должно попадать из бака в топливную чашу карбюратора под действием силы тяжести, что означает, что и бак, и чаша должны выходить в атмосферу, высвобождая очень вредные несгоревшие углеводороды в воздух. А топливо, как и многие растворители, очень легко испаряется. Если умножить все это испарение на все мотоциклы в мире, то легко представить, сколько бензина (в газообразном виде) выбрасывалось в атмосферу. (Велосипеды с впрыском топлива представляют собой герметичные системы и обычно содержат испарительный канистру для улавливания паров до следующего запуска велосипеда, когда они втягиваются во впуск и сгорают.)
Карбюраторы работают хорошо, и это удивительно простые, но точные устройства. Они ушли на второй план по какой-то причине, но это, безусловно, не умаляет изобретательности, необходимой для их разработки, создания и настройки.
карбюратор | механика | Британика
карбюратор , также пишется карбюратор , устройство для питания двигателя с искровым зажиганием топливно-воздушной смесью. Компоненты карбюраторов обычно включают камеру для хранения жидкого топлива, дроссельную заслонку, жиклер холостого хода (или медленно работающий), главный жиклер, ограничитель воздушного потока в форме Вентури и ускорительный насос. Количество топлива в камере хранения контролируется клапаном, приводимым в действие поплавком. Дроссельная заслонка уменьшает всасывание воздуха и позволяет богатому топливу поступать в цилиндры при запуске холодного двигателя. По мере прогрева двигателя воздушная заслонка постепенно открывается либо вручную, либо автоматически с помощью контроллеров, реагирующих на тепло и скорость двигателя. Топливо вытекает из жиклера холостого хода во всасываемый воздух в результате пониженного давления вблизи частично закрытой дроссельной заслонки.Главный топливный жиклер включается при дальнейшем открытии дроссельной заслонки. Затем ограничитель воздушного потока в форме Вентури создает пониженное давление для всасывания топлива из основного жиклера в воздушный поток со скоростью, связанной с воздушным потоком, так что получается почти постоянное соотношение топлива и воздуха. Ускорительный насос впрыскивает топливо во впускной воздух при резком открытии дроссельной заслонки.
В 1970-х годах новое законодательство и предпочтения потребителей побудили производителей автомобилей повысить эффективность использования топлива и снизить выбросы загрязняющих веществ. Для достижения этих целей инженеры разработали системы управления впрыском топлива на основе новых компьютерных технологий. Вскоре системы впрыска топлива заменили карбюраторные топливные системы практически во всех бензиновых двигателях, за исключением двухтактных и небольших четырехтактных бензиновых двигателей, таких как те, которые используются в газонокосилках.
Подробнее по этой теме
Бензиновый двигатель: Карбюратор
Бензиновый карбюратор представляет собой устройство, которое вводит топливо в воздушный поток по мере его поступления в двигатель.Бензин обслуживается…
Эта статья была недавно пересмотрена и обновлена Эми Тикканен.Как работает карбюратор малого двигателя?
Независимо от размера двигателя его карбюратор является компонентом, отвечающим за смешивание газа и воздуха. В этом посте мы ответим на вопрос «Как работает карбюратор маленького двигателя?» Но прежде чем мы обсудим функции карбюратора, давайте рассмотрим различия между карбюратором для небольшого двигателя и карбюратором для стандартного двигателя.
Малый карбюратор двигателя по сравнению со стандартным карбюратором
Все карбюраторы работают одинаково. Стандартный карбюратор, или просто «карбюратор», спроектирован и изготовлен для работы с большими двигателями, потребляющими много бензина. Карбюратор с небольшим двигателем представляет собой уменьшенную версию стандартной модели с меньшим количеством деталей и без некоторых свистков и колокольчиков (или второстепенных функций). Карбюратор небольшого двигателя по-прежнему будет обеспечивать все основные функции, необходимые для небольших двигателей мощностью до 25 лошадиных сил.
Небольшой двигатель обычно устанавливается в меньшем оборудовании, используемом для работы, таком как самоходные косилки, мотокультиваторы и бензопилы. Маленькие двигатели доступны в газовых и бензиновых моделях. Хотя карбюраторы для небольших двигателей аналогичны тем, которые используются в автомобилях, карбюраторы для небольших двигателей не имеют ускорительного насоса. Вместо этого в небольших двигателях используется праймер для подачи топлива в цилиндры небольшого двигателя.
Малый карбюратор двигателя – смешивание воздуха
Карбюратор небольшого двигателя всасывает воздух из области, окружающей небольшой двигатель, и смешивает его с газом, поступающим из прикрепленного топливного бака.Затем смесь распределяется по небольшой трубке, или «вентури», ведущей в камеру сгорания небольшого двигателя.
Карбюратор малого двигателя создает вакуум в топливном баке малого двигателя. Когда газы из резервуара поднимаются в этот вакуум, они сжимаются и нагреваются. Затем этот теплый газ вытягивается из топливного бака небольшого двигателя через небольшие отверстия, называемые «форсунками».
Функции карбюратора малого двигателя
Основные функции карбюратора малого двигателя следующие:
- Подача топливной смеси в камеру сгорания
- Регулировка количества топлива, поступающего в двигатель
- Регулировка топливовоздушной смеси
- Регулярная температура через систему, называемую термостатом
- Реализовать автоматический дроссель
Как работает карбюратор малого двигателя?
- Система впуска воздуха карбюратора является точкой входа воздуха.
- Количество воздуха, поступающего в карбюратор, зависит от настроек воздушной заслонки. Этот компонент закрывает клапан. Больше воздуха может попасть, когда он открыт шире.
- Вентури — это отверстие, которое становится узким, когда в него нагнетается воздух.
- Создается вакуум, втягивающий топливо в крошечную топливную форсунку. Он пропускает достаточное количество топлива, необходимое для взрыва. Именно этот процесс приводит двигатель в действие.
- Избыток газа хранится в поплавковой камере.Поплавок направляется вверх, чтобы перекрыть протекание топлива, когда эта часть заполнена.
- Газ выпускается в камеру, и поплавок опускается вместе с уровнем газа, чтобы одновременно разблокировать отверстие. После этого топливный бак снова наполнится.
- Газ выходит быстрее, когда дроссельная заслонка открыта. Этот процесс гарантирует наличие достаточной мощности для ускорения работы двигателя.
- Клапан холостого хода является второстепенным компонентом вне дроссельной заслонки. Он работает, когда двигатель работает на холостом ходу и дроссельная заслонка закрыта.
Советы по обслуживанию карбюратора малого двигателя
Если техническое обслуживание карбюратора малого двигателя не является частью повседневной работы владельца небольшого двигателя, это может привести к остановке малого двигателя. Вот несколько советов для владельцев небольших двигателей, которые помогут вам поддерживать этот жизненно важный компонент в хорошем состоянии:
- Топливные фильтры малых двигателей с небольшими карбюраторами необходимо очищать каждый раз при заправке бензином (или после каждых двух запусков малых двигателей) для удаления мелких частиц осадка.
- В небольших двигателях с вакуумными карбюраторами следует регулярно очищать или заменять воздушные фильтры. Это поможет поддерживать карбюраторы небольших двигателей в хорошем состоянии и предотвратит снижение производительности.