Как работает радиатор охлаждения: 403 — Доступ запрещён – Как работает радиатор охлаждения двигателя

Ликбез по системам охлаждения

Занятие первое: процессорные кулеры

Со времени появления первых микропроцессоров прошло уже более 30 лет. Микроэлектронная технология успела далеко шагнуть за этот период, и если раньше компьютер был уделом только избранных, то теперь он стал неотъемлемой частью жизни каждого из нас. Но вместе с переходом компьютеров из категории роскоши в разряд, так сказать, средств передвижения, неминуемо образовалась масса серьезных проблем.

Ни для кого не секрет, что высокопроизводительные процессоры сильно нагреваются при работе, иными словами — рассеивают большую тепловую мощность. И без дополнительных средств охлаждения быстродействующее «кремниевое сердце» современного компьютера обойтись уже не может. Проблема обеспечения оптимальной рабочей температуры процессора в последние годы начинает проявлять себя в полный рост, становясь самым настоящим краеугольным камнем на пути к созданию надежной, эргономичной и высокопроизводительной компьютерной системы. Общепризнанным и наиболее распространенным средством охлаждения процессора являются на сегодня так называемые кулеры (или, говоря по научному — теплообменные аппараты принудительного воздушного охлаждения). В общем случае они являются сочетанием металлической оребренной пластины (радиатора) и воздушного насоса (вентилятора), и служат для поддержания рабочей температуры процессора в пределах допустимых нормативов, обеспечивая его правильное и надежн! ое функционирование. Что ж, давайте рассмотрим эти устройства поподробнее.

Радиаторы

По своей сути радиатор является устройством, существенно облегчающим теплообмен процессора с окружающей средой. Площадь поверхности процессорного кристалла чрезвычайно мала (на сегодня не превышает нескольких квадратных сантиметров) и недостаточна для сколько-нибудь эффективного отвода тепловой мощности, измеряемой десятками ватт. Благодаря своей оребренной поверхности, радиатор, будучи установленным на процессоре, в сотни и даже тысячи раз увеличивает площадь его теплового контакта с окружающей средой, способствуя тем самым усилению интенсивности теплообмена и кардинальному снижению рабочей температуры.

Фундаментальной технической характеристикой радиатора является термическое сопротивление относительно поверхности процессорного кристалла — величина, позволяющая оценить его эффективность в качестве охлаждающего устройства.

Термическое сопротивление выражается простым соотношением:

Rt = (Tc — Ta)/Ph, где

Rt — термическое сопротивление радиатора,
Tc — температура поверхности процессорного кристалла,
Ta — температура окружающей среды,
Ph — тепловая мощность, рассеиваемая процессором.

Измеряется термическое сопротивление соответственно в °С/Вт. Оно показывает, насколько увеличится температура процессорного кристалла относительно температуры в компьютерном корпусе при отводе определенной тепловой мощности через данный конкретный радиатор, установленный на процессоре.

Для примера возьмем платформу VIA Eden. Типичное термическое сопротивление процессорного радиатора составляет здесь 6°С/Вт, типичная тепловая мощность процессора равняется 3 Вт, а типичная температура внутри системного блока лежит в пределах 50°C. Перемножив значения термического сопротивления радиатора и тепловой мощности процессора, мы получим 18°C. Теперь мы знаем, что температура поверхности процессорного кристалла будет превышать температуру в системном блоке на 18°C и будет держаться соответственно на уровне 68°C. В принципе, такая температура вполне соответствует «медицинским» нормативам на процессоры VIA Eden ESP, и поводов для беспокойства за его здоровье у нас нет.

Теперь давайте посмотрим другой пример. Если нам вдруг вздумается использовать радиатор от VIA Eden ESP, но уже с процессором AMD Athlon XP, тепловая мощность которого составляет порядка 40–60 Вт, то результат будет плачевным: температура процессора достигнет 300°C и более, что привет к его скоропостижной кончине от «теплового удара». Совершенно очевидно, что при такой тепловой мощности нужен радиатор (или предпочтительно — уже полноценный кулер) с гораздо меньшим термическим сопротивлением, чтобы он смог удержать температуру процессора в пределах безопасных 75–90°C.

Таким образом, для термического сопротивления действует четкий принцип «чем меньше, тем намного лучше». Зная его величину, мы сможем легко оценить целесообразность применения того или иного радиатора (или процессорного кулера в целом, но об этом чуть позднее) в наших конкретных эксплуатационных условиях. И также легко сможем избежать ошибок, которые нередко приводят к катастрофическим последствиям для компьютерной системы и кошелька пользователя.

На практике термическое сопротивление (суть тепловая эффективность) радиатора во многом зависит не только от площади оребренной поверхности, но и от его конструктивных особенностей и технологии изготовления. В настоящее время на рынке представлены пять «архетипов» радиаторов, задействованных в массовом производстве. Позвольте уделить им немного вашего драгоценного внимания.

«Экструзионные» (прессованные) радиаторы. Наиболее дешевые, общепризнанные и самые распространенные на рынке, основной материал, используемый в их производстве — алюминий. Такие радиаторы изготавливаются методом экструзии (прессования), который позволяет получить достаточно сложный профиль оребренной поверхности и достичь хороших теплоотводящих свойств.

«Складчатые» радиаторы. Отличаются довольно интересным технологическим исполнением: на базовой пластине радиатора пайкой (или с помощью адгезионных теплопроводящих паст) закрепляется тонкая металлическая лента, свернутая в гармошку, складки которой играют роль своеобразной оребренной поверхности. Основные материалы — алюминий и медь. По сравнению с экструзионными радиаторами, данная технология позволяет получать изделия более компактных размеров, но с такой же тепловой эффективностью (или даже лучшей).

«Кованые» (холоднодеформированные) радиаторы. Для их изготовления используется технология холодного прессования, которая позволяет «ваять» поверхность радиатора не только в форме стандартных прямоугольных ребер, но и в виде стрежней произвольного сечения. Основной материал — алюминий, но зачастую в основание (подошву) радиатора дополнительно интегрируют медные пластины (для улучшения его теплоотводящих свойств). Технология холодного прессования характеризуется относительно малой производительностью, поэтому «кованые» радиаторы, как правило, дороже «экструзионных» и «складчатых», но далеко не всегда лучше в плане тепловой эффективности.

«Составные» радиаторы. Во многом повторяют методику «складчатых» радиаторов, но обладают вместе с тем весьма существенным отличием: здесь оребренная поверхность формируется уже не лентой-гармошкой, а раздельными тонкими пластинами, закрепленными на подошве радиатора пайкой или стыковой сваркой. Основной используемый материал — медь. Как правило, «составные» радиаторы характеризуются более высокой тепловой эффективностью, чем «экструзионные» и «складчатые», но это наблюдается только при условии жесткого контроля качества производственных процессов.

«Точеные» радиаторы. На сегодня это самые продвинутые и наиболее дорогие изделия. Они производятся прецизионной механической обработкой монолитных заготовок (обрабатываются на специализированных высокоточных станках с ЧПУ) и отличаются наилучшей тепловой эффективностью. Основные материалы — алюминий и медь. «Точеным» радиаторам вполне по силам вытеснить с рынка все остальные «архетипы», если себестоимость такой технологии будет снижена до приемлемых значений.

Итак, радиаторы мы рассмотрели, обратимся теперь к вентиляторам.

Вентиляторы

Как уже было отмечено, современные процессоры испытывают нужду в охлаждающих устройствах с как можно более низким термическим сопротивлением. На сегодня даже самые продвинутые радиаторы не справляются с этой задачей: в условиях естественной конвекции воздуха, т.е. когда скорость движения воздушных масс мала (типичный пример — марево над асфальтом дорожного полотна в жаркий летний день), «штатной» тепловой эффективности радиаторов оказывается недостаточно для поддержания приемлемой рабочей температуры процессора. Кардинально уменьшить термическое сопротивление радиатора можно только одним способом — хорошенько его вентилировать (говоря по-научному, создать условия вынужденной конвекции теплоносителя, то бишь воздуха). Как раз для этих целей практически каждый процессорный радиатор и оборудуется вентилятором, который добросовестно продувает его внутреннее межреберное пространство.

На сегодня в процессорных кулерах находят применение в основном осевые (аксиальные) вентиляторы, формирующие воздушный поток в направлении, параллельном оси вращения пропеллера (крыльчатки).

«Ходовая» часть вентилятора может быть построена на подшипнике скольжения (sleeve bearing, наиболее дешевая и недолговечная конструкция), на комбинированном подшипнике — один подшипник скольжения плюс один подшипник качения (one sleeve -one ball bearing, наиболее распространенная конструкция), и на двух подшипниках качения (two ball bearings, самая дорогая, но в то же время очень надежная и долговечная конструкция). Ну, а электрическая часть вентилятора повсеместно представляет собой миниатюрный электродвигатель постоянного тока.

Как же оценить, насколько хорош (или плох) тот или иной вентилятор? Каковы его технические характеристики и эксплуатационные параметры? Давайте посмотрим!

Во-первых, фундаментальной характеристикой любого вентилятора является его производительность (технический термин — «расход») — величина, показывающая объемную скорость воздушного потока. Выражается она в кубических футах в минуту (cubic feet per minute, CFM). Чем больше производительность вентилятора, тем он более эффективно продувает радиатор, уменьшая термическое сопротивление последнего. Типичные значения расхода — от 10 до 80 CFM.

Во-вторых, очень важной характеристикой вентилятора является скорость вращения крыльчатки (в отечественной практике выражается в об/мин, американская единица измерения — rotations per minute, RPM). Чем быстрее вращается крыльчатка, тем выше становится производительность вентилятора. Типичные значения скорости — от 1500 до 7000 об/мин.

Ну и, в-третьих, еще одна важная характеристика вентилятора — это его типоразмер. Как правило, чем больше габариты вентилятора, тем выше его производительность. Наиболее распространенные типоразмеры — 60х60х15 мм, 60х60х20 мм, 60х60х25 мм, 70х70х15 мм, 80х80х25 мм.

Что же касается эксплуатационных параметров, то наиболее существенными из них являются уровень шума и срок службы вентилятора.

Уровень шума вентилятора выражается в децибелах и показывает, насколько громким он будет в субъективном восприятии. Значения уровня шума вентиляторов лежат в диапазоне от 20 до 50 дБА. Человеком воспринимаются в качестве тихих только те вентиляторы, уровень шума которых не превышает 30-35 дБА.

Наконец, срок службы вентилятора выражается в тысячах часов и является объективным показателем его надежности и долговечности. На практике срок службы вентиляторов на подшипниках скольжения не превышает 10-15 тыс. часов, а на подшипниках качения — 40-50 тыс. часов.

Итак, на сегодня, пожалуй, все. В следующий раз мы вновь обратимся к вентиляторам, произведем их вскрытие и более подробно рассмотрим некоторые технические тонкости. Спасибо за внимание и до встречи!

РадиоКот :: Радиаторы и охлаждение.

РадиоКот >Статьи >

Радиаторы и охлаждение.

В физике, электротехнике и атомной термодинамике есть известный закон — ток, протекающий по проводам, нагревает их. Придумали его Джоуль и Ленц, и оказались правы — так оно и есть. Всё, что работает от электричества, так или иначе часть проходящей энергии передаёт в тепло.
Так уж получилось в электронике, что самым страдающим от тепла объектом нашей окружающей среды является воздух. Именно воздуху нагревающиеся детали передают тепло, а от воздуха требуется принять тепло и куда-нибудь подевать. Потерять, к примеру, или рассеять по себе. Процесс отдачи тепла мы с вами назовем охлаждением.
Наши электронные конструкции тоже рассеивают немало тепла, одни — больше, другие — меньше. Греются стабилизаторы напряжения, греются усилители, греется транзистор, управляющий релюшкой или даже просто мелким светодиодом, разве что греется ну совсем немного. Ладно, если греется немного. Ну а если он жарится так, что руку держать нельзя? Давайте пожалеем его и попробуем как-нибудь ему помочь. Так сказать, облегчить его страдания.

Вспомним устройство батареи отопления. Да, да, та самая обычная батарея, что греет комнату зимой и на которой мы сушим носки и футболки . Чем больше батарея, тем больше тепла будет в комнате, так ведь? По батарее протекает горячая вода, она нагревает батарею. У батареи есть важная вещь — количество секций. Секции контактируют с воздухом, передают ему тепло. Так вот, чем больше секций, то есть чем больше занимаемая площадь батареи, тем больше тепла она может нам отдать. Приварив еще парочку секций, мы сможем сделать теплее нашу комнату. Правда, при этом горячая вода в батарее может остыть, и соседям ничего не останется .
Рассмотрим устройство транзистора.

На медном основании (фланце) 1 на подложке 2 закреплен кристалл 3. Он подключается к выводам 4. Вся конструкция залита пластмассовым компаундом

5. У фланца есть отверстие 6 для установки на радиатор.
Вот это по сути та же самая батарея, посмотрите! Кристалл греется, это как горячая вода. Медный фланец контактирует с воздухом, это секции батареи. Площадь контакта фланца и воздуха — это место нагревания воздуха. Нагревающийся воздух охлаждает кристалл.

Как сделать кристалл холоднее? Устройство транзистора мы изменить не можем, это понятно. Создатели транзистора об этом тоже подумали и для нас, мучеников, оставили единственную дорожку к кристаллу — фланец. Фланец — это как одна-единственная секция у батареи — жарить жарит, а тепла воздуху не передается — маленькая площадь контакта. Вот тут предоставляется простор нашим действиям! Мы можем нарастить фланец, припаять к нему еще «парочку секций», то бишь большую медную пластинку, благо фланец сам медный, или же закрепить фланец на металлической болванке, называемой радиатором. Благо отверстие во фланце приготовлено под болт с гайкой.

Что же такое радиатор? Я твержу уже третий абзац про него, а толком так ничего и не рассказал! Ладно, смотрим:

Как видим, конструкция радиаторов может быть различной, это и пластинки, и ребра, а еще бывают игольчатые радиаторы и разные другие, достаточно зайти в магазин радиодеталей и пробежаться по полке с радиаторами . Радиаторы чаще всего делают из алюминия и его сплавов (силумин и другие). Медные радиаторы лучше, но дороже. Стальные и железные радиаторы применяются только на очень небольшой мощности, 1-5Вт, так как они медленно рассеивают тепло.
Тепло, выделяемое в кристалле, определяется по очень простой формуле P=U*I, где P — выделяемая в кристалле мощность, Вт, U = напряжение на кристалле, В, I — сила тока через кристалл, А. Это тепло проходит через подложку на фланец, где передается радиатору. Далее нагретый радиатор контактирует с воздухом и тепло передается ему, как следующему участнику нашей системы охлаждения.

Посмотрим на полную схему охлаждения транзистора.

У нас появились две штуки — это радиатор 8 и прокладка между радиатором и транзистором 7. Её может и не быть, что и плохо, и хорошо одновременно. Давайте разбираться.

Расскажу о двух важных параметрах — это тепловые сопротивления между кристаллом (или переходом, как его еще называют) и корпусом транзистора — Rпк и между корпусом транзистора и радиатором — Rкр. Первый параметр показывает, насколько хорошо тепло передается от кристалла к фланцу транзистора. Для примера, Rпк, равное 1,5градуса Цельсия на ватт, объясняет, что с увеличением мощности на 1Вт разница температур между фланцем и радиатором будет 1,5градуса. Иными словами, фланец всегда будет холоднее кристалла, а насколько — показывает этот параметр. Чем он меньше, тем лучше тепло передается фланцу. Если мы рассеиваем 10Вт мощности, то фланец будет холоднее кристалла на 1,5*10=15градусов, а если же 100Вт — то на все 150! А поскольку максимальная температура кристалла ограничена (не может же он жариться до белого каления!), фланец надо охлаждать. На эти же 150 градусов .

К примеру:
Транзистор рассеивает 25Вт мощности. Его Rпк равно 1,3градуса на ватт. Максимальная температура кристалла 140градусов. Значит, между фланцем и кристаллом будет разница в 1,3*25=32,5градуса. А поскольку кристалл недопустимо нагревать выше 140градусов, от нас требуется поддерживать температуру фланца не горячее, чем 140-32,5=107,5градусов. Вот так.
А параметр Rкр показывает то же самое, только потери получаются на той самой пресловутой прокладке 7. У нее значение Rкр может быть намного больше, чем Rпк, поэтому, если мы конструируем мощный агрегат, нежелательно ставить транзисторы на прокладки. Но всё же иногда приходится. Единственная причина использовать прокладку — если нужно изолировать радиатор от транзистора, ведь фланец электрически соединен со средним выводом корпуса транзистора.

Вот давайте рассмотрим еще один пример.
Транзистор жарится на 100Вт. Как обычно, температура кристалла — не более 150градусов. Rпк у него 1градус на ватт, да еще и на прокладке стоит, у которой Rкр 2градуса на ватт. Разница температур между кристаллом и радиатором будет 100*(1+2)=300градусов. Радиатор нужно держать не горячее, чем 150-300 = минус 150 градусов: Да, дорогие мои, это тот самый случай, который спасет только жидкий азот: ужос!
Намного легче живется на радиаторе транзисторам и микросхемам без прокладок. Если их нет, а фланцы чистенькие и гладкие, и радиатор сверкает блеском, да еще и положена теплопроводящая паста, то параметр Rкр настолько мал, что его просто не учитывают.

Разобрались? Поехали дальше!

Охлаждение бывает двух типов — конвекционное и принудительное. Конвекция, если помним школьную физику, это самостоятельное распространение тепла. Так же и конвекционное охлаждение — мы установили радиатор, а он сам там как-нибудь с воздухом разберется. Радиаторы конвекционного типа устанавливаются чаще всего снаружи приборов, как в усилителях, видели? По бокам две металлические пластинчатые штуковины. Изнутри к ним привинчиваются транзисторы. Такие радиаторы нельзя накрывать, закрывать доступ воздуха, иначе радиатору некуда будет девать тепло, он перегреется сам и откажется принимать тепло у транзистора, который долго думать не будет, перегреется тоже и: сами понимаете что будет. Принудительное охлаждение — это когда мы заставляем воздух активнее обдувать радиатор, пробираться по его ребрам, иглам и отверстиям. Тут мы используем вентиляторы, различные каналы воздушного охлаждения и другие способы. Да, кстати, вместо воздуха запросто может быть и вода, и масло, и даже жидкий азот . Мощные генераторные радиолампы частенько охлаждаются проточной водой.

Как распознать радиатор — для конвекционного он или принудительного охлаждения? От этого зависит его эффективность, то есть насколько быстро он сможет остудить горячий кристалл, какой поток тепловой мощности он сможет через себя пропустить.
Смотрим фотографии.

Первый радиатор — для конвекционного охлаждения. Большое расстояние между ребрами обеспечивает свободный поток воздуха и хорошую теплоотдачу. На второй радиатор сверху одевается вентилятор и продувает воздух сквозь ребра. Это принудительное охлаждение. Разумеется, использовать везде можно и те, и те радиаторы, но весь вопрос — в их эффективности.
У радиаторов есть 2 параметра — это его площадь (в квадратных сантиметрах) и коэффициент теплового сопротивления радиатор-среда Rрс (в Ваттах на градус Цельсия). Площадь считается как сумма площадей всех его элементов: площадь основания с обеих сторон + площадь пластин с обеих сторон. Площадь торцов основания не учитывается, так там квадратных сантиметров ну совсем немного будет .

Пример:
радиатор из примера выше для конвекционного охлаждения.
Размеры основания: 70х80мм
Размер ребра: 30х80мм
Кол-во ребер: 8
Площадь основания: 2х7х8=112кв.см
Площадь ребра: 2х3х8=48кв.см.
Общая площадь: 112+8х48=496кв.см.

Коэффициент теплового сопротивления радиатор-среда Rрс показывает, на сколько увеличится температура выходящего с радиатора воздуха при увеличении мощности на 1Вт. Для примера, Rрс, равное 0,5 градуса Цельсия на Ватт, говорит нам, что температура увеличится на полградуса при нагреве на 1Вт. Этот параметр считается трехэтажными формулами и нашим кошачьим умам ну никак не под силу: Rрс, как и любое тепловое сопротивление в нашей системе, чем меньше, тем лучше. А уменьшить его можно по-разному — для этого радиаторы чернят химическим путем (например алюминий хорошо затемняется в хлорном железе — не экспериментируйте дома, выделяется хлор!), еще есть эффект ориентировать радиатор в воздухе для лучшего прохождения его вдоль пластин (вертикальный радиатор лучше охлаждается, чем лежачий). Не рекомендуется красить радиатор краской: краска — лишнее тепловое сопротивление. Если только слегка, чтобы темненько было, но не толстым слоем!

В приложении есть маленький программчик, в котором можно посчитать примерную площадь радиатора для какой-нибудь микросхемы или транзистора. С помощью него давайте рассчитаем радиатор для какого-нибудь блока питания.
Схема блока питания.

Блок питания выдает на выходе 12Вольт при токе 1А. Такой же ток протекает через транзистор. На входе транзистора 18Вольт, на выходе 12Вольт, значит, на нем падает напряжение 18-12=6Вольт. С кристалла транзистора рассеивается мощность 6В*1А=6Вт. Максимальная температура кристалла у 2SC2335 150градусов. Давайте не будем эксплуатировать его на предельных режимах, выберем температуру поменьше, для примера, 120градусов. Тепловое сопротивление переход-корпус Rпк у этого транзистора 1,5градуса Цельсия на ватт.

Поскольку фланец транзистора соединен с коллектором, давайте обеспечим электрическую изоляцию радиатора. Для этого между транзистором и радиатором положим изолирующую прокладку из теплопроводящей резины. Тепловое сопротивление прокладки 2градуса Цельсия на ватт.
Для хорошего теплового контакта капнем немного силиконового масла ПМС-200. Это густое масло с максимальной температурой +180градусов, оно заполнит воздушные промежутки, которые обязательно образуются из-за неровности фланца и радиатора и улучшит передачу тепла. Многие используют пасту КПТ-8, но и многие считают её не самым лучшим проводником тепла.
Радиатор выведем на заднюю стенку блока питания, где он будет охлаждаться комнатным воздухом +25градусов.
Все эти значения подставим в программку и посчитаем площадь радиатора. Полученная площадь 113кв.см — это площадь радиатора, рассчитанная на длительную работу блока питания в режиме полной мощности — дольше 10часов. Если нам не нужно столько времени гонять блок питания, можно обойтись радиатором поменьше, но помассивнее. А если мы установим радиатор внутри блока питания, то отпадает необходимость в изолирующей прокладке, без нее радиатор можно уменьшить до 100кв.см.
А вообще, дорогие мои, запас карман не тянет, все согласны? Давайте думать о запасе, чтобы он был и в площади радиатора, и в предельных температурах транзисторов. Ведь ремонтировать аппараты и менять пережаренные транзисторы придется не кому-нибудь, а вам самим! Помните об этом!
Удачи.

Вопросы складываем сюда.


Как вам эта статья?

Заработало ли это устройство у вас?

Радиатор системы охлаждения — Энциклопедия журнала «За рулем»

Радиатор системы охлаждения двигателя легкового автомобиля с автоматической коробкой передач:
1 — бачок радиатора;
2 — охладитель жидкости автоматической трансмиссии;
3 — прокладка;
4— радиатор системы охлаждения;
5 — боковая соединительная скоба;
6 — основание каркаса;
7 — бачок масляного радиатора;
8 — масляный радиатор;
9 — виско-муфта;
10 — вентилятор

Радиатор состоит из двух бачков, между которыми находятся соединительные трубки. Бачки могут изготавливаться из цветного сплава или из пластмассы. Они располагаются сверху и снизу радиатора или по его бокам (см. рис.).
Для того чтобы радиатор эффективно отдавал тепло, необходимо выполнение двух условий: трубки радиатора должны быть выполнены из материала, который имеет хорошую теплопроводность, и радиатор должен иметь достаточную площадь поверхности.
Раньше радиаторы изготавливали из меди и сплавов на ее основе, т. к. медь имеет высокую теплопроводность и коррозионную стойкость. Трубки, которые, как правило, имели плоскую форму, припаивались к бачкам. Для увеличения теплоотдачи (увеличения площади поверхности) между трубками устанавливались гофрированные металлические ленты.
Современные радиаторы, как правило, изготавливают из алюминиевых сплавов, с пластмассовыми бачками, которые прижаты к трубкам радиатора через резиновые прокладки. Такие радиаторы дешевле, легче, технологичнее в производстве, но плохо ремонтируются в случае повреждения.
Заливная горловина системы охлаждения, которая может располагаться на радиаторе или расширительном бачке, закрывается пробкой с двумя клапанами.

Хороший радиатор – залог эффективной работы системы охлаждения

Радиатор – основная деталь системы охлаждения

Сохранение рабочей температуры в необходимых пределах – важнейший фактор стабильной работы двигателя. Опасен как перегрев, так и охлаждение ниже установленной нормы. Сильный нагрев двигателя может изменить рабочие зазоры, что вызовет усиленный износ деталей и даже может привести к заклиниванию узлов и агрегатов. Повышенный нагрев опасен еще и тем, что ухудшает наполнение цилиндров горючей смесью, негативно отражается на самовоспламенении и детонации, что приводит к потерям мощности двигателя.

Значительное охлаждение двигателя вызывает конденсирование рабочей смеси на холодных стенках цилиндров, образовавшийся конденсат стекает в картер двигателя, разжижая тем самым моторное масло. Как следствие, снижается мощность двигателя, увеличивается износ деталей мотора. С понижением температуры моторное масло густеет, текучесть его снижается. Это также сокращает мощность двигателя, повышает топливный расход.

Одна из наиболее удачных моделей легковых автомобилей с двигателем, охлаждающимся только воздухом, – Porshe 911

Одна из наиболее удачных моделей легковых
автомобилей с двигателем, охлаждающимся
только воздухом, – Porshe 911

В автостроении встречается три вида систем охлаждения: воздушная, жидкостная и гибридная. Воздушное охлаждение имеет свои преимущества и вполне успешно действовало, например, в ЗАЗ-968. Оставил о себе добрую память неприхотливый в эксплуатации Porshe 911, также оснащенный воздушным охлаждением. А грузовики Magirus 232 D 19 и Magirus 290 D 26, работавшие на БАМе, продемонстрировали всему миру, что большегрузные машины вполне успешно могут комплектоваться дизелями с воздушным охлаждением и эффективно работать в самых сложных погодных и дорожных условиях.

Жидкостное охлаждение в чистом виде сегодня в автомобилестроении практически не используется. В существовавших конструкциях жидкость не успевала охлаждаться после отбора тепла от цилиндров двигателя, поэтому либо машины с жидкостным охлаждением должны были делать перерывы в работе, либо система охлаждения существенно усложнялась и увеличивалась в габаритах, что было крайне неудобно.

В результате победила гибридная система охлаждения. Сегодня именно ее называют жидкостной, хотя это не совсем корректно, поскольку тепло отводится и охлаждающей жидкостью, и атмосферным воздухом. Гибридное охлаждение состоит из нескольких основных компонентов: рубашки охлаждения блока цилиндров, головки блока цилиндров, жидкостного насоса, или, как его еще называют, помпы, термостата, расширительного бачка, соединительных патрубков и датчиков температуры, но главными элементами системы являются радиаторы, один или несколько, и вентилятор, необходимый для принудительного охлаждения жидкости в радиаторе.

Радиатор охлаждения – это теплообменник, предназначенный для сохранения рабочей температуры двигателя, в зависимости от типа двигателя, в границах от 85 до 100°С и предотвращения перегрева двигателя. Радиаторы бывают разных конструкций и конфигураций. Наиболее распространенными радиаторами являются ленточные и пластинчатые. Пластинчатые радиаторы охлаждения имеют худшие характеристики теплообмена и большую металлоемкость по сравнению с ленточными радиаторами. Они уходят в прошлое, вытесняемые ленточными паяными конструкциями.

Традиционный водный раствор этиленгликоля, если его в срок не поменять, со временем мо- жет образовать кислую среду и начать разъ- едать детали двигателя, в т.ч. и алюминиевые компоненты радиатора

Традиционный водный раствор
этиленгликоля, если его в срок
не поменять, со временем может
образовать кислую среду и начать
разъедать детали двигателя, в т.ч.
и алюминиевые компоненты радиатора

Поскольку детали радиаторов постоянно контактируют с охлаждающей жидкостью (в дальнейшем – ОЖ), то для предотвращения образования очагов коррозии в качестве материалов для деталей радиаторов используют пластмассы и цветные металлы. Широко применяются медно-латунные радиаторы, до 80-х гг. они считались вообще наиболее эффективными и практичными. Ведь, кроме коррозионной стойкости, медь обладает самой лучшей проводимостью тепла среди промышленных материалов.

Однако, под давлением ужесточающихся экологических норм, а также в связи с ростом цены на медь и латунь, сегодня все большее распространение получают радиаторы алюминиевые. Их преимуществами являются высокая коррозионная стойкость, деформируемость, стойкость к скачкам давления, небольшая собственная масса. Специалисты отмечают, что алюминиевые радиаторы служат дольше медно-латунных.

Однако у них имеются свои недостатки: прежде всего, теплопроводность алюминия составляет всего около 60% от теплопроводности меди. Кроме того, технология производства алюминиевых радиаторов достаточно сложна. Еще одним минусом является то, что алюминиевые радиаторы имеют большую площадь теплоотдающей поверхности, что может снижать эффективность их работы.

В автомобильной практике наибольшую популярность завоевали радиаторы, изготовленные методами сборки либо пайки. До недавнего времени сборные радиаторы были больше распространены, поскольку их себестоимость была ниже паяных, они считались более надежной конструкцией, чем пайка. Но технологии совершенствовались. Упрощалась, с одновременным повышением качества, пайка, а открытие новых материалов для пайки изменило отношение потребителей к паяным конструкциям. Очень удачной оказалась технология пайки Nocolok, она получила признание всех ведущих производителей радиаторов.

Magirus 232 D26 грузовик с двигателем с воздушным охлаж- дением. Наши бамовцы хорошо запомнили эти неприхотливые мощные машины

Magirus 232 D26 грузовик с двигателем с воздушным
охлаждением. Наши бамовцы хорошо запомнили эти
неприхотливые мощные машины

Благодаря внедрению Nocolok паяные радиаторы стали опережать сборные по прочности, качественная пайка позволила производить паяные радиаторы практически любой геометрической формы, что для сборных радиаторов было неприемлемо. Также паяные радиаторы оказались более эффективны с точки зрения теплоотдачи, им свойственно пониженное аэродинамическое и гидравлическое сопротивление. Металлоемкость паяных радиаторов меньше сборных. По заключениям экспертов, уже через 3..5 лет в сборных радиаторах параметры теплоотдачи могут понизиться на 30 и более процентов. Это случается при окислении соединений охлаждающих трубок и пластин. Вибрация ослабляет жесткость сборной конструкции радиатора, паяные же радиаторы значительно дольше сохраняют свои эксплуатационные качества.

Необходимость уделять внимание системе охлаждения и основному ее элементу – радиатору подтверждает тот факт, что до 22% всех поломок, возникающих в двигателях, связывают непосредственно со сбоями в работе системы охлаждения, а около 40% внеплановых остановок работы двигателя с проблемами охлаждения мотора связаны косвенно.

Большая часть дефектов в системе охлаждения возникает в результате механических повреждений элементов системы охлаждения. Так, при ударах по радиатору, например, при ДТП он теряет герметичность, через трещины либо неплотности может вытекать ОЖ.

Однако если исключить физический фактор, срок службы радиатора оказывается гораздо более долгим, чем у большинства других деталей автомобиля. Хотя для сохранения высоких показателей теплоотдачи необходимо не реже раза в год тщательно промывать сердцевину радиатора от отложений пыли и мусора.

Также нужно использовать только качественную ОЖ. Это значит, что, во-первых, ОЖ должна быть достаточно морозоустойчива, во-вторых, обладать высокими антикоррозионными свойствами, а в-третьих, жидкий хладагент должен иметь смазывающие свойства. Исполняя роль смазки в насосе системы охлаждения, ОЖ существенно увеличивает эксплуатационный ресурс помпы.

К сожалению, на рынке сегодня реализуется множество видов ОЖ, не отвечающих отечественным стандартам к техническим жидкостям данного назначения. Встречаются такие «образцы» ОЖ, которые могут, наоборот, вызвать распространение коррозии и достаточно быстро засорить трубки охлаждения различными отложениями. Специалисты настоятельно рекомендуют не экономить и при покупке необходимых материалов обращаться только к проверенным поставщикам.

Наиболее часто радиаторы вы- ходят из строя из-за физическо- го воздействия на конструкцию радиатора

Наиболее часто радиаторы выходят из строя из-за
физического воздействия на конструкцию радиатора

Какой радиатор лучше?

Эффективность работы радиатора выражается в его теплоотдаче. Теплоотдача же, в свою очередь, зависит от емкости радиатора и теплопроводности материала трубок радиатора. Если радиатор имеет значительную толщину сердцевины, то это, скорее всего, означает, что ширина охлаждающих трубок увеличена, расстояние между ними минимально, благодаря чему установлено максимальное количество охлаждающих трубок. Таким образом, более толстый радиатор имеет, как правило, большую емкость, и это положительно отражается как на его теплоотдаче, так и на его эксплуатационных показателях в целом.

Также теплоотдача радиатора увеличивается при добавлении элементов «оребрения» – охлаждающих лент и/или пластин. Это, конечно, увеличивает массу радиатора, но зато существенно повышает эффективность отвода тепла от двигателя.

В алюминиевых радиаторах для компенсации относительно низкой теплопроводности устанавливают значительно более широкие, чем использовались в медно-латунных, охлаждающие трубки. Если в медно-латунных радиаторах в тонких трубках довольно часто возникают трещины и монтировать их в радиаторе приходится в два ряда, то в алюминиевых радиаторах трубки в два и даже в три раза шире медных, и это позволяет делать алюминиевые радиаторы однорядными и очень прочными.

Исследования показали, что форма сечения охлаждающих трубок имеет большое значение для эффективности работы радиатора. Так, трубки круглого сечения, с точки зрения аэродинамических процессов, происходящих в радиаторе, существенно проигрывают трубкам плоскоовального сечения.

Комбинированный радиатор, имеются и алюминиевые, и пластмассовые детали

Комбинированный радиатор, имеются и
алюминиевые, и пластмассовые детали

Лучшие радиаторы – это…

Сегодня рынок радиаторов очень разнороден, и хороший радиатор найти не всегда легко. Вот только несколько компаний, чья продукция практически гарантированно не создаст покупателю дополнительных проблем на долгие годы.

Одной из наиболее авторитетных среди производителей авторадиаторов является датская компания Nissens. Кроме авторадиаторов охлаждения, Nissens производит отопители, интеркулеры, масляные радиаторы, системы охлаждения промышленного назначения. Компания производит несколько тысяч моделей радиаторов для различных легковых автомобилей, микроавтобусов и грузовиков, оснащаемых всеми типами двигателей. Все радиаторы Nissens отличаются от конкурентов тепловой эффективностью, превышающей на 15…20% параметры стандартных радиаторов. Радиаторы от Nissens обладают высокой коррозионной стойкостью, легки, прочны, долговечны и, наконец, полностью отвечают всем европейским требованиям, предъявляемым к OEM-компонентам, которые составляют около 50% от объема производства Nissens. Компания является ОЕM-поставщиком для ряда ведущих компаний, таких как Deutz-Fahr, Scania Вuses, Massey Ferguson, Dynapac, SAAB, Still, Van Hool, Compair Group и Ingersoll Rand.

При изготовлении радиаторов в Nissens используют только материалы лучшего качества, используются алюминий, медь, латунь. Высококачественный алюминий после специальной обработки получает очень высокую коррозионную стойкость. Сердцевины, изготавливаемые по системе McCord, – это использование специальных жалюзи, это установка трубок охлаждения на минимальном расстоянии друг от друга, а также пайка компонентов сердцевины по технологии Nocolok. Новые технологии позволяют достигать повышенной тепловой эффективности, радиаторы датского предприятия очень пластичны, не боятся внутренних напряжений и внешних физических воздействий.

Если не очищать радиатор, он может вообще перестать пропускать через себя воздух

Если не очищать радиатор, он может вообще
перестать пропускать через себя воздух

Радиаторы Nissens изготовлены очень качественно во всех отношениях, вплоть до мельчайших деталей – крепежных компонентов, патрубков, хомутов. Все комплектующие быстро, легко и удобно монтируются при установке радиатора на «рабочее» место. Кроме того,  все покупатели отмечают, что радиаторы Nissens с эстетической точки зрения выглядят просто безупречно.

Behr Hella Service – совместное предприятие, созданное в 2005 г. двумя немецкими компаниями – Behr и Hella. СП было образовано для того, чтобы совместными усилиями обеспечить глобальный рынок запасными частями для систем автоохлаждения и автомобильной климатической техники. Каждое предприятие в СП имеет по 50% акций, а радиаторы компании реализуются под торговой маркой Behr Hella. Авторитет участников СП позволил Behr Hella Service с 2007 г. получить эксклюзивное право на реализацию в Европе продукции американской корпорации Visteon.

Основное направление деятельности Hella KGaA & Co – разработка и поставка автокомпонентов в сфере освещения и электроники, а с образованием Behr Hella Service компания занялась созданием элементов климатизации для автомобиля.

Компания Behr была основана в 1905 г., тогда она называлась S.K.F. Первым значимым событием для компании стало заключение в 1910 г. контракта на поставку радиаторов для Mercedes-Benz. Затем были заключены аналогичные контракты с German Ford, Volkswagen, во время Второй мировой войны компания выпускала радиаторы для самолетов. В 1920 г. на предприятии освоили производство сотовых радиаторов, в 1975 г. Behr начала выпускать алюминиевые авторадиаторы. Сегодня, кроме участия в Behr Hella Service, предприятие принимает участие еще в 12 совместных предприятиях, среди которых известный бренд Machle Behr. Предприятие сохранило собственное подразделение, компанию Behr Thermot-Tronic, которая занимается разработкой термостатов и термореле для интеллектуального контроля температурного режима. Каждый четвертый автомобиль в Европе оснащается деталями, в т.ч. и в системе охлаждения, произведенными на заводах Behr.

На предприятиях Behr разработана собственная инновационная система контроля качества, Behr Quality Drive, в которой продуман контроль качества от разработки продукта до его отгрузки покупателю.

 Компания Behr Hella Service сегодня предлагает более 110 моделей радиаторов, которые реализуются на рынке запчастей, параллельно с деталями OEM. Примечательно, что Behr Hella Service поставляет радиаторы не только для современных моделей, но и на те машины, которые в Европе называют oldtimer, т.е. старинные, раритетные автомобили. Компания сертифицирована в системе ISO: ISO/TS 16949:2009, DIN EN ISO 9001:2008, DIN EN ISO 14001:2004.

Группа компаний Ava включает в себя компании, находящиеся в восьми странах Европы. Компания Ava Quality Cooling основана в 1983 г. как компания-дистрибьютор, она поставляет в Россию различные виды радиаторов, комплектующие и запчасти к системам воздушного кондиционирования. Ava постепенно приобретала дистрибьюторские компании в разных странах Европы, и сегодня Ava Quality Cooling стала крупнейшим дистрибьютором радиаторов в Западной Европе.

Для того, чтобы радиатор не терял теплопроводности, необ- ходимо не реже раза в год либо обдувать его сжатым воздухом, либо поливать из шланга водой под давлением с целью удаления мусора и пыли из «сот»

Для того, чтобы радиатор не терял теплопроводности,
необходимо не реже раза в год либо обдувать его
сжатым воздухом, либо поливать из шланга водой
под давлением с целью удаления мусора и пыли
из «сот»

В 1993 г. руководством компании было принято решение расширить деятельность компании и заняться поставкой запчастей к системам кондиционирования, а в 2005 г. в ассортимент продукции были включены вентиляторы и комплектующие к ним. Сегодня Ava входит в группу компаний Haugg Kuhlerfabrik, начавшую свою деятельность еще в 1923 г. Продукция Ava привлекает своими тщательно подобранными материалами и точной обработкой каждой детали.

Ava – это ведущая компания отрасли, поставляющая продукцию, сделанную по современным технологиям, и предоставляющая двухгодичную гарантию на всю продукцию Ava.

История еще одного известного немецкого предприятия, компании Geri, насчитывает более 30 лет. Geri является одним из крупнейших поставщиков радиаторов на европейский рынок запчастей. Об объемах производственной программы можно судить по тому факту, что ассортимент продукции охватывает практически все модели автотранспорта, которые в последние годы производились в странах Европы и Азии. Радиаторы компании имеют высокую теплоотдачу. При пайке используются новейшее оборудование и технология Nacolok.

В 2000 г. было создано российское отделение немецкого автомобильного холдинга Kraft. Компания Kraft располагает собственной сертифицированной лабораторией и конструкторским бюро, которые постоянно держат под контролем весь процесс и технологию производства автомобильных деталей и комплектующих. Вся продукция изготовлена на новейшем техническом оборудовании и распространяется по сетям представительств и дилеров. Основная часть производственных линий Kraft задействована на производстве и поставке комплектующих для крупных автомобильных концернов.

Российская компания «Автосинтез» получила эксклюзивные права на распространение и продажу автомобильных запасных частей, поставляемых компанией Kraft на территории России и стран Содружества. Для закрепления этих прав в 2005 г. «Автосинтезом» была зарегистрирована собственная торговая марка Oberkraft. В связи с многократным увеличением объемов продаж и повышенным спросом на продукцию Kraft на территории РФ, советом директоров холдинга было принято решение об учреждении и выделении компании Oberkraft в самостоятельное дочернее предприятие. Сегодня офис компании Oberkraft находится в Мюнхене и контролирует производство и поставки товаров в Россию.

Нидерландская компания NRF уже 87 лет назад начала свою деятельность в Амстердаме в качестве мастерской по ремонту радиаторов, но собственные радиаторы компания начала изготавливать только в 1954 г. В 1989 г. NRF вошла в американскую компанию Modine и после этого полностью сосредоточилась на проблемах обеспечения запчастями вторичного рынка Европы, в т.ч. и радиаторами системы охлаждения, радиаторами охлаждения масла, радиаторами наддувочного воздуха. Сегодня NRF специализируется на разработке и производстве высококачественных радиаторов для авто- и ж/д транспорта.

радиатор

Еще одна заметная на российском рынке компания родом из Тайваня. Компания Cryomax Cooling System была основана в 1984 г. Успех и стабильность в деятельности Cryomax появились благодаря высокому качеству продукции, а также хорошей организации сервисного обслуживания.

Китайская автомобильная корпорация тепловых систем TechRad была создана в мае 2006 г., и сегодня это один из ведущих в Китае производителей алюминиевых автомобильных радиаторов. Пайка радиаторов осуществляется по признанной в мире, одной из лучших, технологии CAB, при этом компания использует также и технологию Nocolok. В настоящее время TechRad сосредоточилась на выпуске качественных авторадиаторов, и производственная программа выпуска радиаторов охватывает практически все модели десяти ведущих европейских и семи японских автопроизводителей, а также американские бренды Ford и GM и корейские Kia, Hyubday и Daewoo. Надо отметить, что в модельный ряд компании постоянно добавляются новые и новые конструкции радиаторов.

Наши успехи

Луганский Завод автомобильных радиаторов, известный сегодня больше как компания Luzar, с 2003 г. занимается производством и реализацией радиаторов и других деталей системы охлаждения. Производство базируется на немецком оборудовании фирмы Scholer, при пайке радиаторов применяется технология французской компании Sofico. Предприятие освоило производство качественных радиаторов для ChevroletDaewoo Lanos с кондиционером и без такового, а также радиатора для узбекской сборки Daewoo Nexia 1.5i 16V. На предприятии разработали сначала конструкции радиаторов в основном для корейских марок – Daewoo, Kia, Hyundai. Однако с 2010 г. предприятие уже начало производить радиаторы для Renault Logan и Ford Focus (I и II).

В производственных планах Luzar – освоение выпуска в текущем году радиаторов для японских машин, для Toyota всех практически моделей и Nissan, моделей Almera, Almera Classic, Primera, Micra/Note и др. Также в планах руководства Luzar освоить выпуск радиаторов на модели Opel: Antara, Astra G, Astra H, Astra J, Vectra B, Vectra C.

Еще один заметный отечественный производитель радиаторов – компания Fenox. Еще в 1996 г. на Fenox приобрели оборудование немецкой компании Bremse Hydraulic, что позволило запустить на предприятии выпуск автокомпонентов по шести главным направлениям, среди которых производственная группа Fenox Cooling system, производящая детали для систем охлаждения и отопления. На все отечественные легковые машины Fenox освоила выпуск радиаторов, причем на предприятии стараются идти в ногу со временем. В технологии производства используются новейшие разработки: система S-compilation, увеличивающая поверхность теплообмена радиаторов, усиленные ребра пластин Ribbed surface, выполняется защита внутренних полостей радиаторов AntiCor, упаковка CarePac предотвращает повреждение радиаторов при транспортировке и т.д.

Дмитровский завод радиаторов является частью Дмитровского автоагрегатного завода. На ДЗР можно приобрести радиатор практически для любой «легковушки» отечественного производства, в т.ч. и для устаревших моделей. «Таврия», «Ока», «Лада Самара», «Калина», «Приора», «Шевроле Нива» – вот далеко не полный перечень марок, на которые имеются радиаторы охлаждения. Впрочем, на эти модели заводом освоен выпуск и радиаторов отопителя.

Завод «Оренбургский радиатор» также сориентирован на отечественный транспорт: производятся медно-латунные радиаторы хорошего качества на все модели ВАЗ, «Таврия», ГАЗ-3110, Москвич-2141, УАЗ, а также на грузовики. Предприятие проводит техническое перевооружение, приобретая импортное оборудование. В частности, в прошлом году было приобретено оборудование компании Atlas Copco, а затем высокотехнологичное оборудование из Польши – Hydron Unipress. Теперь, благодаря приобретениям, предприятие самостоятельно производит оловянно-свинцовые припои.

Одним из наиболее успешных предприятий по выпуску радиаторов является Лихославльский радиаторный завод. С момента своего основания в 1959 г. завод был единственным специализированным предприятием по выпуску медно-латунных автомобильных радиаторов и отопителей, одним из первых в мире завод освоил технологию и начал производство паяных алюминиевых радиаторов. Предприятие имеет собственные конструкторские и технологические подразделения, испытательные лаборатории.

Использование современных технологий позволяет выпускать алюминиевые радиаторы, лучшие в России и соответствующие требованиям самых жестких мировых стандартов, превосходящие ожидания самых требовательных потребителей. Правда, завод производит в основном радиаторы на грузовые машины и автобусы, всего лишь одна модель рассчитана на использование в ГАЗ-3110.

К сожалению, как мы видим, для легковых, особенно импортных, машин рынок предлагает радиаторы, ввозимые из-за рубежа. В то же время наши производители имеют все возможности, чтобы освоить эту нишу рынка и составить достойную конкуренцию западному производителю. Произойдут ли изменения в данном секторе машиностроения и не будут ли наши предприятия вытеснены с российского рынка, покажет время.

для чего нужен радиатор двигателя,что в него заливают и принцип работы?

в него заливают антифриз, он нужен для охлаждения двигателя, при вращении коленвала, посредством ремня вращается помпа системы охлаждения которая прогоняет антифриз через блок двигателя, в радиатор, и так по кругу, в процессе езды радиатор обдувается вентилятором и наружным потоком воздуха, таким образом антифриз охлаждается

Роль радиатора охлаждения в двигателях внутреннего сгорания. Радиатор предназначен для принудительного отвода от деталей двигателя лишнего тепла и передачи его окружающему воздуху. Благодаря этому создается определенный температурный режим, при котором двигатель не перегревается и не переохлаждается. Температура охлаждающей жидкости, находящейся в головке блока цилиндров, должна быть равна 80-95С. Такой температурный режим наиболее выгоден, обеспечивает нормальную работу двигателя и не должен изменяться в зависимости от температуры окружающего воздуха и нагрузки двигателя. Температура в течение рабочего цикла двигателя изменяется от 80-120°С (минимальная) в конце впуска до 2000-2200°С (максимальная) в конце сгорания смеси. Если двигатель не охлаждать, то газы, имеющие высокую температуру, сильно нагревают детали двигателя, и они расширяются. Масло на цилиндрах и поршнях выгорает, их трение и износ возрастают, а от чрезмерного расширения деталей происходит заклинивание поршней в цилиндрах дви­гателя, и двигатель может выйти из строя. В любом случае решать Вам, ремонтировать радиатор немедленно, если конечно с ним возникли проблемы, или дожидаться когда из строя выйдет двигатель. Если радиатор Вашего автомобиля требует немедленного ремонта, приезжайте к нам. Мы устраним течь, трещины, разрывы бачков и чистку радиатора от накипи.

радиатор необходим для охлаждения двигателя, а заливают туда специальную жидкость, либо тосол либо антифриз (они не замерзают и температура кипения выше)

для охлаждения -заливают тосол -а хладагент заливают в кондиционер

Машина пить хочет. Сушняк у неё постоянно.

работает как батарея отопления

Это батарея, только наоборот.

Охлаждать масло, чтоб не сгорело и заливают воду летом а зимой спецраствор у которого низская температура замерзания, а вода летом остывает ответра который очень силен при движении

принцип работы))) ) а оно тебе надо? Главное — не советую лезть в него и крышку откручивать на горячей машине! Да и на холодной тоже)))))

На Татре-815 и Запорожце радиатора нет, и ничего ездиют по дорогам.

ДА ФИГ ЕГО ЗНАЕТ

Обзор самодельных систем охлаждения видеокарт | Вентиляторы охлаждения | Блог

Если вы застали компьютерные форумы и блоги нулевых годов, то наверняка помните фотографии видеокарт, к которым прикручены кулеры от процессоров. Давайте вспомним самодельные системы охлаждения видеокарт, зачем их делали и почему их нет в наше время.

В нулевые годы бурно расцвели самодельные системы охлаждения для видеокарт. «Кулибины» с компьютерных форумов меняли на видеокартах вентиляторы, ставили радиаторы от процессоров и городили дополнительный обдув.
Условно, эти самоделки можно разделить на несколько уровней.

Дополнительный обдув видеокарты

Обычно брался вентилятор на 120 или 80 мм и закреплялся таким образом, чтобы обдувать проблемные места видеокарты: зону VRM, память, обратную сторону текстолита над чипом. Решение было простое и очень эффективное.

Ведь вмешательства в систему охлаждения видеокарты не было и товарный вид не страдал. Дополнительный обдув легко снимался и видеокарту можно было продать на б/у рынке или отнести в магазин по гарантии.


Так же этот способ был наименее рискованным, шансы повредить видеокарту были минимальны. «Как может один вентилятор так улучшить охлаждение?» — спросите вы. Чем хуже охлаждение на подопытной видеокарте, тем сильнее заметен эффект от таких кустарных методов.


Если вы избалованы дорогими моделями видеокарт с несколькими теплотрубками в радиаторе и дополнительным охлаждением чипов памяти и зоны конвертера питания, то вам не понять, в каких тяжелых условиях трудятся дешевые модели видеокарт. Особенно — дешевые модели среднего уровня, где и тепловыделение уже приличное, а производитель сэкономил на всем, чем можно.

90-110 градусов на чипах памяти и зоне VRM на таких видеокартах — это обычное дело, и в таком случае дополнительный обдув — это спасение. Он легко может скинуть 10-20 градусов с системы питания и чипов памяти, что давало видеокарте возможность нормально работать без перегрева.

Я и сам делал такие системы обдува в нулевые годы. Как мне казалось, переболел этой «самодеятельностью» навсегда, думая, что делать этого больше не придется, однако нужда заставила.

В 2017 году, когда после скачка курса криптовалют майнить их стали даже не разбирающиеся в компьютерах люди и на любом доступном оборудовании, я не удержался и докупил к уже имеющейся Gigabyte GeForce GTX 1060 G1 Gaming, Palit GeForce GTX 1070 Jetstream. И сразу столкнулся с перегревом в корпусе компьютера, видеокарты стали нагревать друг друга. По отдельности, эти модели видеокарт вполне добротные середнячки в плане охлаждения, но вместе выделяли слишком много тепла.

Держать компьютер открытым я не мог из-за детей и котов, поэтому пришлось изобретать дополнительное охлаждение, как и в нулевые годы.

Я ставил дополнительный вентилятор на боковую крышку компьютера на вдув и выдув, но самым эффективным оказался продув видеокарт с торца вентилятором 140 мм. Температуры пришли в норму и можно было спокойно майнить дальше.

Кстати, следующий уровень переделки систем охлаждения видеокарт тоже снова расцвел в связи с майнингом.

Замена вентиляторов охлаждения

Эта процедура уже посложнее и требует хотя бы минимальных знаний по сборке компьютеров. В нулевые годы массовые видеокарты имели довольно низкое энергопотребление и комплектовались маленьким радиатором со смешным вентилятором размера 40 мм. 
Эти вентиляторы не отличались качеством и начинали трещать через несколько месяцев работы.

Самым простым способом ремонта была замена маленького вентилятора на полноценный, размером 80 или 92 мм с приличными оборотами. Питание такого вентилятора обычно подключали к разъему «молекс» блока питания, и он крутился на постоянных оборотах без регулирования.

Более опытные пользователи подключали вентилятор через реобас и прибавляли обороты на время игры. Но, назвать удобным такой метод конечно нельзя. Зато ему не откажешь в эффективности, такой вентилятор обычно решал и проблему с перегревом.

В 2017 году, после майнинг бума, количество видеокарт, задействованных в майнинге, было огромным. И первое, что стало ломаться на видеокартах, работающих круглые сутки — это вентиляторы. Они выходили из строя массово и в интернете стал очень популярным способ, когда на видеокарту ставился один или два вентилятора 92-120 мм на стяжки.

Это очень эффективный метод, который решал проблему и шума и нагрева. Вентиляторы 120 мм создавали приличный воздушный поток и даже на постоянных 1000 оборотах в минуту их было достаточно. Я применял такой способ на GeForce GTX 660 с затрещавшим вентилятором (без майнинга) и остался очень им доволен.

Замена радиатора охлаждения на процессорный

Как я уже писал выше, энергопотребление видеокарт в нулевые годы было довольно низким и на них зачастую ставили смехотворно маленькие радиаторы. Например: GeForce 8800 GT (512 Мбайт) в играх потреблял около 111 ватт, GeForce 7900 GTX (512 Мбайт) — 84 ватта. Radeon X1900 XT (512 Мбайт) который считался жутко горячим — 130 ватт.

А более бюджетные видеокарты среднего уровня потребляли совсем немного: Radeon X1600 XT (256 Мбайт) — 42 ватта, Radeon HD 3850 (256 Мбайт) — 72 ватта, GeForce 7600 GT (256 Мбайт) — 39 ватт.

И замена радиатора на процессорный на таких видеокартах решала сразу три проблемы: уменьшала шум, уменьшала нагрев, повышала разгонный потенциал.

А разгонный потенциал тогда был очень серьезный. Производители еще не придумали тогда систему буста, когда видеокарта разгоняет саму себя, в зависимости от потребления тока, температуры и нагрузки. И пользователям приходилось разгонять видеокарты самостоятельно.
Тогда произошел бурный рост программ для разгона: RivaTuner, ATI Tray Tools, NVIDIA nTune, PowerStrip. ATI Tray Tools мог изменять даже тайминги памяти в реальном режиме времени.

Донором радиатора обычно становился боксовый кулер от процесора Intel с медным сердечником. Он подходил на эту роль идеально, за счет своей формы в виде множества радиальных ребер. В промежуток между ребрами вставлялись длинные болтики.


Часть ребер надо было отпилить или отломить. Обеспеченные умельцы брали дорогие кулеры, типа ZALMAN — CNPS7000C-Cu и курочили уже их. Но на изуродованный ZALMAN было просто больно смотреть, особенно учитывая, что продавались отличные видеокулеры ZALMAN VF900-Cu и Zalman VF700-Cu.

Даже младший Zalman VF700-Cu отлично справлялся со средними видеокартами тех лет, что уж говорить о старшей модели, которая легко могла отвести тепло от ATI Radeon X1900 XTX.

Видеокарты часто становились жертвами таких переделок, особенно если не использовалась прижимная пластина с обратной стороны. В таком случае видеокарту выгибало дугой и рвало дорожки в текстолите или отрывало шары BGA-пайки чипа и памяти.

Рассвет и закат альтернативных систем охлаждения

В начале 2010 годов тепловыделение видеокарт резко пошло вверх, что поставило крест на попытках охладить их обычным алюминиевым радиатором, пусть даже и с медным сердечником. И постепенно, такая переделка сошла на нет.

К тому же, производители альтернативных систем охлаждения просто завалили рынок отличными кулерами, достаточно вспомнить Zalman VF3000F, Thermalright Shaman или DEEPCOOL DRACULA.

Отдельные энтузиасты ставили на видеокарты кулеры с теплотрубками от процессоров, но это решение было настолько громоздким, что такие случаи были единичны.

Но постепенно сошла на нет и установка на видеокарты суперкулеров типа Thermalright Shaman. Почему? Я считаю, что из-за расширения ассортимента моделей видеокарт, роста сложности их плат и схемотехники, внедрения механизма буста.

Экономный пользователь берет недорогую видеокарту и она работает на заявленных частотах. А видеокарты с топовыми заводскими кулерами настолько повышают бустовую частоту, что исчезает надобность их разгонять.


А установка альтернативной системы охлаждения довольно сложна и есть риск повредить видеокарту сразу, сколов кристалл или CMD-резистор. Или испортив уже в процессе эксплуатации, допустив перегрев памяти или системы питания.

А вы пробовали менять охлаждение на видеокарте на альтернативное?

Для чего служит и как работает радиатор?

а хер его знает на ютубе вроде были хорошие ролики-обучалки

пиздато он работает. для охлаждения. или наоборот нагрева чего либа.

Роль радиатора охлаждения в двигателях внутреннего сгорания. Радиатор предназначен для принудительного отвода от деталей двигателя лишнего тепла и передачи его окружающему воздуху. Благодаря этому создается определенный температурный режим, при котором двигатель не перегревается и не переохлаждается. Температура охлаждающей жидкости, находящейся в головке блока цилиндров, должна быть равна 80-95С. Такой температурный режим наиболее выгоден, обеспечивает нормальную работу двигателя и не должен изменяться в зависимости от температуры окружающего воздуха и нагрузки двигателя. Температура в течение рабочего цикла двигателя изменяется от 80-120°С (минимальная) в конце впуска до 2000-2200°С (максимальная) в конце сгорания смеси. Если двигатель не охлаждать, то газы, имеющие высокую температуру, сильно нагревают детали двигателя, и они расширяются. Масло на цилиндрах и поршнях выгорает, их трение и износ возрастают, а от чрезмерного расширения деталей происходит заклинивание поршней в цилиндрах двигателя, и двигатель может выйти из строя. В любом случае решать Вам, ремонтировать радиатор немедленно, если конечно с ним возникли проблемы, или дожидаться когда из строя выйдет двигатель. Если радиатор Вашего автомобиля требует немедленного ремонта, приезжайте к нам. Мы устраним течь, трещины, разрывы бачков и чистку радиатора от накипи.

служит для обогрева помещения

Leave a Comment

Ваш адрес email не будет опубликован. Обязательные поля помечены *