Не поступает бензин в камеру сгорания: Почему не поступает бензин в двигатель: основные причины
Почему не поступает бензин в двигатель: основные причины
Начнем с того, что в процессе эксплуатации автомобиля водители достаточно часто сталкиваются с тем, что двигатель не заводится, работает с перебоями или неожиданно глохнет. При этом обычно диагностика затрагивает систему зажигания (на бензиновых авто) и систему питания.
Как показывает практика, нестабильная работа силового агрегата на бензиновых автомобилях во многих случаях связана с тем, что в двигатель не поступает бензин. В этой статье мы поговорим о том, почему так происходит, а также что делать водителю, если нет поступления бензина в двигатель.
Содержание статьи
- По каким причинам горючее не подается в цилиндры
- Распространенные проблемы с подачей бензина в ДВС
- Что в итоге
По каким причинам горючее не подается в цилиндры
Итак, общая схема работы системы питания предполагает забор топлива из бензобака, после чего горючее попадает в карбюратор или инжектор.
Далее топливо подается во впускной коллектор, затем топливно-воздушная смесь через впускные клапаны поступает в камеру сгорания.
Становится понятно, что если не поступает бензин в двигатель, тогда эта проблема возникает как на моторах с карбюратором, так и на инжекторных ДВС. Самой простой причиной можно считать отсутствие бензина в баке или повреждение топливных магистралей. Другими словами, речь идет об утечках в результате каких-либо повреждений бака или топливопроводов, когда бензин вытекает еще до попадания в цилиндры.
Распространенные проблемы с подачей бензина в ДВС
- Если исключить утечки, следующей причиной, по которой в мотор не подается бензин, являются различные неполадки бензонасоса. Отметим, что на автомобилях с карбюратором стоит бензонасос механического типа и располагается в подкапотном пространстве.
При этом на инжекторных двигателях стоит электрический бензонасос. Указанный насос расположен непосредственно в топливном баке. Если говорить о механическом устройстве, то зачастую к его поломке или некорректной работе приводит повреждение мембран, а также перегрев.
Электробензонасос обычно выходит из строя в тех случаях, когда работает с минимальным количеством топлива в баке. Дело в том, что охлаждение данного типа насосов происходит именно за счет горючего. Также следует выделить проблемы с реле бензонасоса или обрыв проводки, по которой осуществляется его питание электроэнергией.
Добавим, что если устройство не в состоянии создать нужного давления в топливной системе (давление отсутствует или низкое), тогда форсунки на некоторых ДВС могут не открываться, двигатель в этом случае не запускается. В других случаях открытие инжекторов все же происходит, однако топлива все равно недостаточно. При этом агрегат начинает работать с перебоями, глохнуть на разных режимах и т.д.
На начальном этапе необходимо произвести замер давления топлива в топливной рампе инжекторного двигателя, параллельно не забывая и о возможных проблемах с регулятором давления в рампе.
- Еще одной проблемой, которая мешает топливу попасть в цилиндры двигателя, является загрязнение фильтров топливной системы. На инжекторе кроме привычного топливного фильтра также имеется сеточка бензонасоса, при этом в случае сильного загрязнения сетки-фильтра бензонасоса производительность устройства заметно падает.
Если же происходит загрязнение топливного фильтра тонкой очистки, тогда поступление горючего в двигатель может быть полностью перекрыто. Что касается карбюратора, на таких авто также имеется фильтр топлива, который обычно установлен перед карбюратором. Если происходит засорение фильтрующего элемента, тогда начинаются трудности с запуском мотора и подачей топлива на разных режимах.
Чтобы избежать указанных выше неполадок, фильтры нужно своевременно менять как на карбюраторном, так и на инжекторном моторе. Также нужно помнить, что фильтр-сетку на бензонасосе нужно периодически чистить или полностью менять на новую каждые 50-60 тыс. км. пробега.
- Завершает список возможных причин нарушения топливоподачи в двигатель загрязнение карбюратора или инжекторных форсунок, а также выход отдельных элементов из строя.
Рекомендуем также прочитать статью о том, как почистить сеточку бензонасоса. Из этой статьи вы узнаете о признаках, которые указывают на необходимость чистки элемента, а также как почистить сетку-фильтр бензонасоса своими руками.
Чтобы этого не происходило, инжектор нужно периодически чистить одним из доступных способов (ультразвуком, специальными очистителями на стенде и т.д.). Также следует добавить, что карбюратор может требовать очистки, ремонта или отдельной настройки. Например, недостаточное количество бензина в поплавковой камере приведет к тому, что горючего будет недостаточно для нормальной работы ДВС.
Что в итоге
Как видно, при наличии определенных навыков и знаний можно определить, почему не поступает бензин в двигатель как на моторах с карбюратором, так и на инжекторных силовых агрегатах. При этом многие проблемы можно решить самому. Например, отремонтировать, почистить и настроить карбюратор вполне реально в гаражных условиях. То же самое можно сказать и о чистке форсунок своими руками.
Рекомендуем также прочитать статью о том, почему бензонасос не качает бензин при включении зажигания. Из этой статьи вы узнаете об основных причинах, по которым не происходит повышения давления в топливной системе после поворота ключа зажигания в замке или в момент активации топливного насоса инжекторного двигателя.
Напоследок хотелось бы отметить, что своевременная замена топливных фильтров, регулярная чистка инжектора или карбюратора, а также езда на топливе хорошего качества являются залогом исправной работы системы питания бензинового или дизельного двигателя.
Также следует помнить, что на инжекторных ДВС крайне нежелательно оставлять минимум горючего в баке, так как отложения и мусор на дне начинают засасываться в бензонасос, в результате чего устройство не только хуже охлаждается, но и происходит интенсивное загрязнение сетки бензонасоса со всеми вытекающими последствиями.
Также езда с полупустым баком зимой приводит к активному образованию конденсата, который накапливается в бензобаке. В результате конденсат (вода) не только оседает на дне и попадает в камеру сгорания, но и вызывает сильную коррозию стенок резервуара. В результате в баке появляется ржавчина, а в случае сквозной коррозии неизбежно возникают активные утечки топлива.
Нет подачи бензина в двигатель автомобиля, причины
Прекращение подачи бензина в двигатель – одна из основных неисправностей автомобилей.
Ее причиной может служить неисправность одного или нескольких элементов системы питания: топливного бака, топливных магистралей, карбюратора, фильтров. В такой ситуации двигатель автомобиля может не запуститься вовсе (как холодный, так и прогретый), возможна внезапная остановка двигателя во время движения.
Проверка подачи топлива
Сузить круг поиска неисправности поможет проверка. Следует проверить – поступает топливо из топливной системы в карбюратор или нет. Снимаем шланг с впускного патрубка карбюратора или с выпускного бензонасоса и нажимаем несколько раз на рычаг ручной подкачки топлива на бензонасосе. При возникновении каких-либо проблем с топливоподачей из топливных магистралей, бака или неисправном бензонасосе струя топлива из шланга будет отсутствовать, или будет слишком слабой. Если струя присутствует – неисправен карбюратор.
Несколько наиболее распространенных причин отсутствия подачи топлива в двигатель на примере топливной системы автомобилей ВАЗ 2108, 2109, 21099
Начинаем искать в нем неисправность, если топливо из бензонасоса поступает (см. проверку выше).
Что смотреть в карбюраторе.
1. Сетчатый фильтр в карбюраторе (на предмет засорения).
Выворачиваем пробку фильтра, извлекаем фильтрующий сетчатый элемент, промываем бензином, прочищаем зубной щеткой, продуваем сжатым воздухом. Так же прочищаем и продуваем отверстие под фильтр в крышке карбюратора.
2. Детали поплавкового механизма в поплавковой камере карбюратора.
Причинами прекращения подачи топлива из поплавковой камеры могут быть зависание иглы игольчатого клапана в верхнем запирающем положении, из-за перекоса иглы в корпусе или задевания поплавков за стенки поплавковой камеры (не опускаются вниз). Так же следует обратить внимание на правильность регулировки уровня топлива в поплавковой камере карбюратора. Для проверки элементов поплавковой камеры карбюратора следует снять его крышку.
Игла и поплавки карбюратора СолексВ некоторых случаях для отклинивания иглы клапана достаточно всего лишь слегка постучать по карбюратору.
3. Топливный жиклер ГДС 1-й камеры карбюратора, эмульсионную трубку.
Снимаем крышку карбюратора, выворачиваем трубку и жиклер, прочищаем их деревянной палочкой или медной проволокой, промываем ацетоном, продуваем сжатым воздухом.
Теперь причины прекращения подачи топлива связанные с самой системой питания (топливо из бензонасоса не выходит)
1. Закончилось топливо в бензобаке.
Если датчик на панели приборов по каким-то причинам обманывает, то вполне можно оказаться в ситуации, когда топливо в баке уже закончилось, а водитель и не подозревает об этом. Посмотрите на фильтр тонкой очистки топлива. Если он пуст или бензина в нем очень мало, скорее всего, причина прекращения подачи топлива в его отсутствии.
Топливный бак (бензобак) ВАЗ 2108, 2109, 210992. Неисправен сам бензонасос.
Здесь могут быть проблемы с диафрагмой (прохудилась), толкателем, сетчатым фильтром или клапанами. Пробитая диафрагма выдаст себя подтеками топлива на бензонасосе и запахом бензина. Для прочистки сетчатого фильтра необходимо снимать крышку бензонасоса. Выступание толкателя следует проверить и отрегулировать. Помимо этого особенностью ДААЗовских бензонасосов автомобилей ВАЗ 2108, 2109, 21099 является их отказ работать в жаркую погоду, при сильном прогреве двигателя. В такой ситуации поможет мокрая тряпка положенная сверху на крышку бензонасоса. Подробнее см. «Неисправности бензонасоса».
3. Неисправна (повреждена, засорилась) топливная магистраль от бензобака к бензонасосу.
Необходимо убедиться в сохранности, как металлической трубки магистрали, так и ее резиновых шлангов. Для этого желательно осмотреть ее от бака до бензонасоса. Повреждения магистрали обычно сопровождаются запахом бензина и потеками.
Проверить топливную магистраль на предмет засорения можно, если снять топливный шланг с впускного штуцера бензонасоса и подуть в него (ртом или через насос) в направлении бензобака. Крышку на заливной горловине бензобака при этом следует снять. Бурление подаваемого воздуха в бензобаке свидетельствует о том, что, топливная магистраль чиста. В противном случае нужно продуть ее компрессором.
Проверка клапанов бензонасоса4. Засорился фильтр тонкой очистки топлива.
Замените фильтр новым или временно удалите его из системы, вставив вместо него кусок трубки и закрепив его хомутами.
5. Засорился заборник топлива в бензобаке.
Извлечь его на автомобилях ВАЗ 2108, 2109, 21099 можно подняв заднее сиденье, через лючок в кузове. В первую очередь следует обратить внимание на сетчатый фильтр заборника. Его необходимо прочистить зубной щеткой, промыть бензином и продуть сжатым воздухом. Продуть необходимо и сам заборник топлива, так как скопление грязи могут присутствовать не только в его сетчатом фильтре, но и в нем самом. Засоренный заборник и его фильтр могут быть причиной не только прекращения подачи топлива, но перебоев в работе двигателя, как на холостом ходу, так и в движении.
Заборник топлива в бензобаке с сетчатым фильтромПричиной загрязнения заборника могут быть илистые отложения, скапливающиеся со временем в бензобаке. Для предотвращения подобной ситуации следует провести его профилактическую прочистку (см. «Прочистка топливного бака»).
Вот, пожалуй и все основные причины прекращения поступления топлива в двигатель на автомобилях ВАЗ 2108, 2109, 21099.
Примечания и дополнения
В помощь при поиске неисправностей топливной системы пригодится ее схема для автомобилей ВАЗ 2108, 2109, 21099 – «Схема топливной системы автомобилей ВАЗ 2108, 2109, 21099».
Еще статьи по топливной системе автомобилей
— Бензин, применяемый на автомобилях ВАЗ 2108, 2109, 21099
— Расход топлива автомобилями ВАЗ 2108, 2109, 21099
— Неисправности топливной системы автомобилей ВАЗ 2108, 2109, 21099
— Как увеличить мощность двигателя автомобиля без тюнинга?
— Проверка поплавков карбюратора Солекс
Подписывайтесь на нас!
Сгорание в дизельных двигателях
Сгорание в дизельных двигателях Ханну Яаскеляйнен, Магди К. Хайр Это предварительный просмотр статьи, ограниченный некоторым исходным содержанием. Для полного доступа требуется подписка DieselNet.
Пожалуйста, войдите под номером , чтобы просмотреть полную версию этого документа.
- Приготовление и смешивание дизельного топлива
- Исследовательские двигатели для оптической диагностики
Abstract : В дизельных двигателях топливо впрыскивается в цилиндр двигателя ближе к концу такта сжатия. Во время фазы, известной как задержка воспламенения, топливная струя распыляется на мелкие капли, испаряется и смешивается с воздухом. По мере того, как поршень продолжает двигаться ближе к верхней мертвой точке, температура смеси достигает температуры воспламенения топлива, вызывая воспламенение некоторого количества предварительно перемешанного количества топлива и воздуха. Остаток топлива, не участвовавший в предварительном сгорании, расходуется на фазе сжигания с регулируемой скоростью.
- Компоненты процесса сжигания
- Скорость тепловыделения в двигателях с прямым впрыском
- Три фазы сгорания дизельного топлива
- Концептуальная модель сжигания дизельного топлива
- Шум, создаваемый горением
Сгорание в дизельных двигателях очень сложное, и до 1990-х годов его подробные механизмы не были хорошо изучены. В течение десятилетий его сложность, казалось, не позволяла исследователям раскрыть его многочисленные секреты, несмотря на доступность современных инструментов, таких как высокоскоростная фотография, используемая в «прозрачных» двигателях, вычислительная мощность современных компьютеров и множество математических моделей, разработанных для имитации сгорания в дизельном топливе.
В этой статье будет рассмотрена наиболее известная модель сгорания для обычного дизельного двигателя . Это «обычное» дизельное сгорание в первую очередь контролируется смешиванием с, возможно, сгоранием с предварительным смешиванием, которое может происходить из-за смешивания топлива и воздуха перед воспламенением. Это отличается от стратегий сжигания, которые пытаются значительно увеличить долю происходящего сжигания предварительно смешанного топлива, например, различные ароматы низкотемпературного сгорания.
Основной предпосылкой дизельного сгорания является его уникальный способ высвобождения химической энергии, содержащейся в топливе. Чтобы выполнить этот процесс, кислород должен быть доступен для топлива определенным образом, чтобы облегчить горение. Одним из наиболее важных аспектов этого процесса является смешивание топлива и воздуха, которое часто называют
В дизельных двигателях топливо часто впрыскивается в цилиндр двигателя ближе к концу такта сжатия, всего за несколько градусов угла поворота коленчатого вала до верхней мертвой точки 9.0042 [391] . Жидкое топливо обычно впрыскивается с высокой скоростью в виде одной или нескольких струй через небольшие отверстия или форсунки в наконечнике форсунки. Он распыляется на мелкие капли и проникает в камеру сгорания. Распыленное топливо поглощает тепло окружающего нагретого сжатого воздуха, испаряется и смешивается с окружающим высокотемпературным воздухом высокого давления. По мере того, как поршень продолжает двигаться ближе к верхней мертвой точке (ВМТ), температура смеси (в основном воздуха) достигает температуры воспламенения топлива. Быстрое воспламенение некоторых предварительно смешанного топлива и воздуха происходит после периода задержки воспламенения. Это быстрое воспламенение считается началом сгорания (а также концом периода задержки воспламенения) и характеризуется резким повышением давления в цилиндре по мере того, как происходит сгорание топливно-воздушной смеси.
Сгорание дизельного топлива характеризуется обедненным общим соотношением A/F. Самое низкое среднее отношение A/F часто наблюдается в условиях максимального крутящего момента. Чтобы избежать чрезмерного дымообразования, соотношение A/F при пиковом крутящем моменте обычно поддерживается на уровне выше 25:1, что значительно выше стехиометрического (химически правильного) отношения эквивалентности, равного примерно 14,4:1. В дизельных двигателях с турбонаддувом соотношение A/F на холостом ходу может превышать 160:1. Поэтому избыточный воздух, находящийся в цилиндре после сгорания топлива, продолжает смешиваться с горящими и уже сгоревшими газами на протяжении всего процесса сгорания и расширения.
Следующие факторы играют основную роль в процессе сгорания дизельного топлива:
- Модель инжектировала наддувочный воздух , его температуру и кинетическую энергию в нескольких измерениях.
- Распыление впрыскиваемого топлива , проникающая способность, температура и химические характеристики.
Хотя эти два фактора являются наиболее важными, существуют и другие параметры, которые могут сильно на них влиять и, следовательно, играть второстепенную, но все же важную роль в процессе горения. Например:
- Конструкция впускного отверстия , которая оказывает сильное влияние на движение наддувочного воздуха (особенно когда он входит в цилиндр) и, в конечном счете, на скорость смешивания в камере сгорания. Конструкция впускного отверстия также может влиять на температуру наддувочного воздуха. Это может быть достигнуто за счет передачи тепла от водяной рубашки к наддувочному воздуху через площадь поверхности впускного отверстия.
- Впускной клапан размера , который регулирует общую массу воздуха, поступающего в цилиндр за конечное время.
- Степень сжатия , которая влияет на испарение топлива и, следовательно, на скорость смешивания и качество сгорания.
- Давление впрыска , которое определяет продолжительность впрыска для заданного размера отверстия сопла.
- Геометрия отверстия сопла (длина/диаметр), которая контролирует проникновение струи, а также распыление.
- Геометрия распыления , которая напрямую влияет на качество сгорания за счет использования воздуха. Например, больший угол конуса распыления может поместить топливо на верхнюю часть поршня и за пределы камеры сгорания в дизельных двигателях с прямым впрыском с открытой камерой сгорания. Это условие приведет к чрезмерному дымлению (неполному сгоранию) из-за лишения топлива доступа к воздуху, находящемуся в камере сгорания (камере). Большие углы конуса также могут привести к распылению топлива на стенки цилиндра, а не внутрь камеры сгорания, где это требуется. Топливо, распыляемое на стенку цилиндра, в конечном итоге будет стекать в масляный картер, что сократит срок службы смазочного масла. Поскольку угол распыления является одной из переменных, влияющих на скорость смешивания воздуха с топливной струей вблизи выходного отверстия форсунки, он может оказывать значительное влияние на общий процесс сгорания.
- Конфигурация клапана , который управляет положением форсунки. Двухклапанные системы заставляют форсунку располагаться под наклоном, что подразумевает неравномерное распыление, что приводит к ухудшению смешивания топлива и воздуха. С другой стороны, четырехклапанная конструкция допускает вертикальную установку форсунок, симметричное расположение топливных форсунок и равный доступ к доступному воздуху для каждой из топливных форсунок.
- Верхнее положение поршневого кольца , которое контролирует мертвое пространство между верхней кромкой поршня (область между верхней канавкой поршневого кольца и верхней частью днища поршня) и гильзой цилиндра. Это мертвое пространство/объем задерживает воздух, который сжимается во время такта сжатия и расширяется, даже не участвуя в процессе сгорания.
Поэтому важно понимать, что система сгорания дизельного двигателя не ограничивается камерой сгорания, форсунками и их ближайшим окружением. Скорее, он включает в себя любую часть, компонент или систему, которые могут повлиять на конечный результат процесса сгорания.
###
Глава 11: Горение (обновлено 31.05.10)
Глава 11: Горение (обновлено 31.05.10) Глава 11: Возгорание
(Спасибо
до Дэвид
Бейлесс за помощь в написании
этот раздел)
Введение — До этого точка теплоты Q во всех задачах и примерах была либо заданной значение или было получено из отношения первого закона. Однако в различных тепловые двигатели, газовые турбины и паровые электростанции полученный в результате процессов сжигания с использованием либо твердого топлива (например, уголь или дрова). жидкое топливо (например, бензин, керосин или дизельное топливо), или газообразное топливо (например, природный газ или пропан).
В этой главе мы познакомимся с химией и
термодинамика горения универсальных углеводородных топлив — (C х Н у ),
в котором окислителем является кислород, содержащийся в атмосферном воздухе.
Обратите внимание, что мы не будем рассматривать сжигание твердого топлива или
сложные смеси и смеси углеводородов, входящие в состав
бензин, керосин или дизельное топливо.
Атмосферный воздух содержит примерно 21% кислорода (O 2 ) по объему. Остальные 79% «других газов» в основном азот (N 2 ), т.е. будем считать, что воздух состоит из 21 % кислорода и 79 % азота. объем. Таким образом, каждый моль кислорода, необходимый для окисления углеводорода, в сопровождении 79/21 = 3,76 моль азота. Используя эту комбинацию молекулярная масса воздуха становится 29 [кг/кмоль]. Обратите внимание, что это предполагается, что азот обычно не подвергается никакому химическому воздействию. реакция.
Процесс горения — Основной процесс горения можно описать топливом (т. углеводород) плюс окислитель (воздух или кислород), называемый Реагенты , которые подвергаются химическому процессу с выделением тепла с образованием Продукты сгорания так, чтобы масса сохранялась. в простейший процесс горения, известный как Стехиометрический Горение , весь углерод в топливе образует двуокись углерода (CO 2 ) и весь водород образует воду (H 2 O) в продуктах, поэтому химическую реакцию можно записать так:
где z известен как стехиометрический коэффициент для окислителя (воздуха)
Обратите внимание, что эта реакция дает пять неизвестных: z, a,
b, c, d, поэтому нам нужно решить пять уравнений. стехиометрический
сжигание предполагает, что в продуктах нет избыточного кислорода, поэтому
d = 0. Остальные четыре уравнения получаем из балансировки числа
атомов каждого элемента в реагентах (углерод, водород, кислород
и азот) с количеством атомов этих элементов в
продукты. Это означает, что ни один атом не разрушается и не теряется в
реакция горения.
Элемент | Сумма в реагентах | = | Сумма в продуктах | Сокращенное уравнение |
Углерод (C) | х |
| а | а = х |
Водород (H) | и |
| 2b | б = у/2 |
Кислород (O) | 2z |
| 2а+б | z = а + b/2 |
Азот (N) | 2(3,76)z |
| 2с | c = 3,76z |
Обратите внимание, что образовавшаяся вода может находиться в виде пара или
жидкой фазы в зависимости от температуры и давления
продукты горения.
В качестве примера рассмотрим стехиометрическое горение метана (СН 4 ) в атмосферном воздухе. Приравнивание моляра коэффициенты реагентов и продуктов получаем:
Теоретическое соотношение воздух-топливо и воздух-топливо -The минимальное количество воздуха, обеспечивающее полное сгорание топлива называется Теоретическая Air (также называемый Стехиометрический воздух ). В этом случае продукты не содержат кислорода. Если мы поставляем меньше, чем теоретический воздух, тогда продукты могут содержать углерод монооксида (CO), поэтому нормальная практика заключается в подаче более теоретический воздух, чтобы предотвратить это явление. это Превышение Air приведет к появлению кислорода в продукты.
Стандартная мера количества воздуха, используемого в процесс сгорания Air-Fuel Соотношение (AF), определяемое следующим образом:
Таким образом, рассматривая только реагенты метана сгорания с теоретическим воздухом, представленным выше, получаем:
Решенная проблема 11. 1 — В
этой задачи мы хотим разработать уравнение горения и определить
соотношение воздух-топливо для полного сгорания н-бутана (C 4 Н 10 )
с а) теоретическим воздухом и б) 50% избытком воздуха.
Анализ продуктов сгорания — Горение всегда происходит при повышенных температурах и будем считать, что все продукты сгорания (включая воду пар) ведут себя как идеальные газы. Так как газ у них разный. постоянных, удобно использовать уравнение состояния идеального газа в через универсальную газовую постоянную следующим образом:
При анализе продуктов сгорания имеется интересны несколько пунктов:
1) Что такое объемный процент конкретных продуктов, в частности двуокиси углерода (CO 2 ) и углерод монооксид (СО)?
2) Что такое роса точка водяного пара в продуктах сгорания? Это требует оценка парциального давления паровой составляющей водяного пара продукты.
3) Имеются экспериментальные методы объемного анализ продуктов сгорания, как правило, делается на Сухой Основа , что дает объемный процент всех компонентов, кроме водяного пара. Это позволяет простой метод определения фактического соотношения воздух-топливо и избытка используемого воздуха в процессе горения.
Для идеальных газов мы находим, что мольная доля y i i-го компонента в смеси газов при удельном давлении P
а температура T равна объемной доле этого компонента.
Так как из молярного отношения идеального газа: P.V = N.R у .Т,
у нас есть:
Кроме того, поскольку сумма объемов компонентов V i должны равняться общему объему V, имеем:
Используя аналогичный подход, мы определяем частичную давление компонента с использованием закона парциальных давлений Дальтона:
Решенная проблема 11. 2 — В
эта проблема Пропан (C 3 H 8 )
сжигается с 61% избыточного воздуха, который поступает в камеру сгорания при
25°С. Предполагая полное сгорание и полное давление 1 атм.
(101,32 кПа), определите а) соотношение воздух-топливо [кг воздуха/кг топлива], б)
объемный процент двуокиси углерода в продуктах, и c)
температура точки росы продуктов.
Решенная проблема 11.3 — В эта проблема Этан (C 2 H 6 ) сжигается атмосферным воздухом, а объемный анализ сухие продукты сгорания дают следующее: 10% CO 2 , 1% CO, 3% O 2 и 86% N 2 . Развивать уравнение горения, и определить а) процент избытка воздух, б) соотношение воздух-топливо, и в) точка росы сгорания продукты.
Первый закон анализа горения — Основной целью горения является получение тепла за счет изменения энтальпии от реагентов к продуктам. Из первого закона уравнение в контрольном объеме без учета кинетической и потенциальной энергии изменения и при условии, что работа не выполняется, мы имеем:
, где суммирование проводится по всем продукты (p) и реагенты (r).N относится к количеству молей каждого компонента, а h [кДж/кмоль] относится к молярной энтальпии каждый компонент.
Поскольку существует ряд различных веществ нам необходимо установить общее эталонное состояние для оценки энтальпии, обычно выбирают 25 ° C и 1 атм, что обычно обозначается верхним индексом о. Проф. С. Бхаттачарджи из Государственный университет Сан-Диего разработал экспертную веб-систему в < www.thermofluids.net > называется ТЕСТ ( Т он E эксперт S система для T (гермодинамика) в который он включил набор таблиц свойств идеального газа, основанных на на энтальпии h или = 0 по этой общей ссылке. Мы адаптировали некоторые из этих таблиц специально для этого раздела, и их можно найти в по следующей ссылке:
Горение Таблицы молярной энтальпии
В качестве примера снова рассмотрим полное сгорание метана (CH 4 ) с теоретическим воздухом:
Обратите внимание, что в реагентах и продуктах
В приведенном выше примере у нас есть основные элементы O 2 и N 2 как
а также соединения CH 4 ,
CO 2 и H 2 O. Когда соединение образуется, изменение энтальпии называется Энтальпия
пласта , обозначаемый h f o ,
и для нашего примера:
Вещество
Формула
hfo [кДж/кмоль]
Углекислый газ
СО 2 (г)
-393 520
Водяной пар
Н 2 О(г)
-241 820
Вода
Н 2 О(л)
-285 820
Метан
СН 4 (г)
-74 850
где (g) относится к газу и (l) относится к жидкость.
Знак минус означает, что процесс Экзотермический , т. е. при образовании соединения выделяется тепло. Обратите внимание, что энтальпия образования основных элементов O 2 и N 2 составляет нуль.
Сначала рассмотрим случай, когда имеется достаточно теплообмен таким образом, что и реагенты, и продукты находятся в 25°C и давление 1 атм, и что водный продукт является жидким. С заметного изменения энтальпии нет, уравнение энергии принимает вид:
Это тепло (Qcv) называется энтальпией . Горения или Отопление Значение топлива. Если продукты содержат жидкую воду, то это Высшее Теплота сгорания (как в нашем примере), однако, если продукт содержит водяной пар, то это Нижний Теплотворная способность топлива. энтальпия сгорания – это наибольшее количество тепла, которое может быть выделяется данным топливом.
Адиабатическая температура пламени —
Противоположная крайность приведенного выше примера, в котором мы оценивали
энтальпией сгорания является случай адиабатического процесса, в котором
тепло не выделяется. Это приводит к значительной температуре
увеличение продуктов сгорания (обозначается Адиабатическая
Температура пламени ), которая может быть
уменьшается за счет увеличения соотношения воздух-топливо.
Решенная проблема 11.4 — Определить адиабатическая температура пламени для полного сгорания Метан ( CH 4 ) с 250% теоретического воздуха в адиабатическом контрольном объеме.
Это уравнение может быть решено только итеративным
метод проб и ошибок с использованием таблиц Sensible
Энтальпия против температуры для всех четырех
составные части продукции — СО 2 ,
Н 2 О, О 2 ,
и N 2 . Быстрый
приближение к адиабатической температуре пламени может быть получено с помощью
при условии, что продукты полностью состоят из воздуха. Этот подход был
представил нас Поттер и Somerton в их Schaum’s
Краткое изложение термодинамики для инженеров ,
в котором они предполагали, что все продукты будут N 2 . Мы находим более удобным использовать воздух, предполагая репрезентативное значение
из конкретных
Теплоемкость воздуха : С р, 1000К = 1,142 [кДж/кг.К].
Таким образом, суммируя все моли продуктов, мы имеем:
Использование таблиц Sensible Энтальпия против температуры мы оценили энтальпии всех четырех продуктов при температуре 1280К. Этот в результате общая энтальпия составила 802 410 [кДж/кмоль топлива], что составляет очень близко к требуемому значению, что оправдывает такой подход.
Проблема 11.5 — — Определить адиабатическую температуру пламени. полное сгорание пропана ( C 3 H 8 ) с 250% теоретического воздуха в адиабатическом контрольном объеме [T = 1300К].
__________________________________________________________________________________________
Инженерная термодинамика Израиля
Уриэли находится под лицензией Creative
Commons Attribution-Noncommercial-Share Alike 3.