Система охлаждения двс принцип работы: Система охлаждения двигателя: описание и принцип работы

Устройство и принцип работы системы охлаждения двигателя в автомобиле

Несмотря на то, что автомобиль – это механизм, ему не чужды некоторые человеческие черты. Например, во время движения машина расходует топливо и выделяет огромное количество тепла. Наш организм аналогично использует питательные вещества и также выделяет энергию, которая расходуется на всевозможные процессы. Чтобы поддерживать постоянную температуру тела, излишки тепла выводятся с потом, этот процесс испарение весьма энергозатратный.

А как автомобилю удается поддерживать постоянную температуру и не перегреваться? Это возможно благодаря такому важному элементу, как система охлаждения двигателя.

Что это такое, каково устройство, какой у нее принцип работы, и как диагностировать возможные неисправности, постараемся разобраться в статье ниже.

✔️ Что такое система охлаждения

✔️ Ее устройство и принцип работы

✔️ Принцип работы системы охлаждения воздушного типа

✔️ Возможные неполадки в работе и их последствия

Содержание

Что такое система охлаждения

Это система, посредством которой достигается отведение избытка тепла от автомобильного двигателя и других деталей.

Обычно это достигается путем кругового движения охлаждающей жидкости (тосол или антифриз), проходящей через специальные охлаждающие каналы. Есть два типа системы охлаждения: воздушный и водяной (жидкостный).

Некоторые двигатели охлаждаются воздушным потоком, проходящим непосредственно через корпуса цилиндров (воздушная система охлаждения).

Помимо поддержания нормальной рабочей температуры движка, данный автомобильный узел выполняет еще несколько важных функций:

  • охлаждает автоматическую коробку передач;
  • охлаждает выхлопные газы, а также масло;
  • обеспечивает работу систем отопления и кондиционирования.

Устройство и принцип работы водяного типа

Для начала, давайте разберем, как работает водяная система охлаждения. На сегодняшний день, она наиболее распространена. Поскольку позволяет равномерно и эффективно охладить все детали, при любых условиях. Ее функционирование обеспечивают следующие элементы:

  • термостат с клапаном;
  • центробежная помпа;
  • радиатор охлаждения масла;
  • радиатор охлаждающей жидкости;
  • вентилятор;
  • расширительный бак;
  • теплообменник обогревателя;
  • патрубки: верхний, нижний;
  • насос ОЖ;
  • шланги.

Конструкция и устройство зависят от модели авто.

ГБЦ (головки блока цилиндров) мотора с водяным охлаждением имеют систему каналов, по которым движется тосол. Все они в верхней части конструкции сходятся к одному выходу.

Центробежная помпа, приводимая в движение шкивом и ремнем от коленвала, подает нагретый антифриз из мотора к радиатору, который является разновидностью теплообменника и имеет особую пластинчатую структуру. Такое строение, обеспечивает огромную площадь рабочей поверхности для более эффективного отвода тепла.

Отсюда избыток тепла отправляется в воздушный поток, а затем охлажденная жидкость возвращается во впускное отверстие, в нижней части блока и снова движется к двигателю. Цикл повторяется снова и снова.

Наряду с основным радиатором могут устанавливаться два дополнительных: для охлаждения масла и отработанных газов. Функционирование радиатора отработанных газов обеспечивается дополнительным насосом.

В отличие от радиатора, теплообменник отопителя нагревает проходящий, через него воздух, который направляется в салон. Для наибольшей эффективности он устанавливается на выходе нагретого тосола из мотора.

В исправном двигателе охлаждающая жидкость имеет температуру чуть ниже точки кипения. Закипание антифриза предотвращается повышенным давлением, в результате чего температура кипения также становится несколько выше. Современные модели автомобилей имеют герметичную систему охлаждения, где для компенсации изменений в объеме тосола, используется расширительный бачок. Через него, также проводится долив жидкости в систему.

Чтобы система функционировала, радиатору необходим постоянный доступ сердечника к холодному воздуху. Когда автомобиль находится в движении, то радиатор получает достаточно сильный поток воздуха, но когда машина неподвижна, либо перемещается с малой скоростью, поток воздуха направляется силой вентилятора.

Вентилятор приходит в движение от мотора, но если двигатель работает при малой нагрузке, его использование не всегда является оправданным, поскольку это приводит к бесполезному расходу топлива.

В качестве решения данной проблемы, производители авто используют специальную муфту, работающую от термочувствительного клапана, который не включает вентилятор до тех пор, пока температура охлаждающей жидкости не достигнет заданного значения.

Некоторые машины имеют вентилятор с электроприводом, также включаемый и выключаемый датчиком температуры.

Чтобы, дать двигателю быстро набрать необходимую рабочую температуру, циркуляция жидкости к радиатору перекрывается термостатом, обычно расположенным над помпой. Термостат имеет клапан, работающий от камеры, заполненной воском. Когда движок нагревается, он плавится, расширяется и переводит клапан в положение «открыто», позволяя тосолу течь через радиатор.

Когда работа мотора останавливается, а температура снижается, клапан снова закрывается.

Контроль за работой системы охлаждения осуществляется системой управления двигателем. За основу берется математическая модель, учитывающая в себе множество параметров (температуру антифриза, масла, воздушного потока и многих других). На основании этих данных, рассчитываются наилучшие условия работы всех исполнительных устройств.

Воду не желательно использовать, в качестве охлаждающей жидкости. В летний период, есть вероятность перегрева двигателя. Зимой ее использование, чревато серьезными поломками. Так замерзание в системе, может привести к разрыванию патрубков и даже блока мотора.

Как и все тела, вода при понижении температуры начинает уменьшаться в объеме. Так происходит до 4 °С. При приближении к нулю и переходе в твердое состояние она начинает расширяться. Если она замерзает в моторе, то может разорвать блок или радиатор. Поэтому желательно использовать всевозможные антифризы, которые представляют собой воду с добавлением к ней различных присадок. Их введение снижает температуру замерзания до безопасного уровня и препятствует появлению коррозии.

Антифриз не следует сливать каждое лето, его можно менять один раз в 2-3 года или каждые 40000 км пробега.

Воздушная система охлаждения

В таком моторе ГБЦ имеет на своей наружной поверхности специальные ребра. Они несколько шире в верхней части, где выделяется наибольшее количество тепла.

Основные элементы при данном типе охлаждения:

  • ребра на головках цилиндов;
  • воздуховоды;
  • вентилятор, который приводится в работу мотором;
  • масляный радиатор.

Воздуховод проходит вокруг ребер, а вентилятор направляет воздушный поток через него, чтобы отводить тепло.

Термочувствительный клапан контролирует объем воздуха, подаваемого вентилятором, и поддерживает постоянную температуру даже в холодную погоду.

Данный тип охлаждения имеет ряд недостатков:

  • потеря мощности на приводе вентилятора;
  • чрезмерное нагревание отдельных деталей;
  • повышенный шум;
  • трудности с использованием полученного тепла для обогрева салона;
  • невозможность установить блочный тип расположения цилиндров.

Ввиду данных особенностей, такая система охлаждения используется крайне редко.

Возможные неисправности

Как видим, система охлаждения является очень важной для нормальной работы вашего авто. И любые неисправности могут привести к серьезным последствиям, прежде всего к перегреву двигателя.

Итак, существуют следующие типы неисправностей данного автомобильного узла:

  1. Проблемы с радиатором. Наиболее часто причиной выхода из строя данной детали, является наружное и внутреннее загрязнение. Наружное связано с попаданием в него с потоком воздуха грязи, пыли, листьев, насекомых. Внутреннее – с образованием налета из-за использования грязной воды или некачественного тосола, который буквально закупоривает отверстия в сердечнике.
  2. Разгерметизация и потеря жидкости. Чаше всего это происходит из-за ослабления стяжки и других соединительных элементов, повреждения соединительных шлангов, износа резиновых элементов, рассыхания пластика.
  3. Не работает термостат или его клапан.
  4. Поломка насоса, в результате чего будет наблюдаться полное либо частичное прекращение циркуляции охлаждающей жидкости.
  5. Сломан вентилятор.  Причин у данной поломки несколько: вышел из строя электродвигатель или муфта, отошла проводка.

Все эти неисправности могут нарушить циркуляцию охлаждающей жидкости, в результате чего температура двигателя повысится до критической. Перегрев ведет к нарушению герметичности, плавлению резиновых деталей, задиру головок блока цилиндров, появлению дефектов в металле, потере масло-смазочных свойств и многих других неприятностей.

Первым, на что стоит обратить внимание при осмотре деталей, следы подтеков охлаждающей жидкости, элемент будет выглядеть «запотевшим». Антифриз является довольно текучей жидкостью, поэтому протекает даже в самые маленькие трещинки и зазоры. Он может распространиться на рабочие узлы, которые находятся далеко за пределами системы охлаждения.

Еще одним важным параметром, выход за нормы которого, может привести к неполадкам — давление. Как известно, оно является довольно высоким и в норме составляет 1,2-2 атм. Для его регулировки используется расширительный бачок с клапаном, куда выводится избыток тосола. Если по какой-то причине клапан не сработал, то значение данного параметра становится критическим. Это может привести к разрыву и поломке многих деталей. В первую очередь страдают резиновые шланги и патрубки, а также прокладки.

Чтобы избежать проблем, регулярно проводите профилактические осмотры, вовремя меняйте износившиеся детали, следите за уровнем антифриза в баке и доливайте при необходимости. Используйте только качественный антифриз и старайтесь, без острой необходимости, не использовать обычную воду, в качестве охлаждающей жидкости.

Регулярно поглядывайте на приборную панель, на термометре охлаждающей жидкости не должно быть резких скачков значений. Если же данное явление имеет место быть, то это свидетельствует о возможной неисправности термостата или помпы, а также о завоздушивании системы. Значительно увеличить срок службы деталей, поможет регулярная промывка системы охлаждения двигателя.

 

принцип работы, преимущества и недостатки

Большинство автолюбителей знакомо лишь с традиционными типами двигателей с жидкостной СОД. А ведь существуют и моторы, где используется воздушное охлаждение двигателя, и это не только ЗАЗ 968. Давайте подробно рассмотрим устройство, принцип действия воздушной системы охлаждения, а также недостатки и преимущества такого решения. Эта информация будет полезна для каждого автолюбителя.

Назначение

В процессе работы ДВС температуры в камере сгорания могут достигать 2000 градусов. Если не будет надежной системы охлаждения, повысится расход масла и горючего. Перегрев приведет к быстрому износу и поломке двигателя.

почему включается вентилятор

Если мотор не будет достаточно прогреваться, это также будет на нем негативно сказываться. Если наблюдается переохлаждение, это грозит снижением мощности, интенсивным износу, повышенным расходом горючего.

Более того, в большинстве современных автомобилей, кроме основных задач, данная система выполняет и второстепенные функции. Первым делом это обеспечение работы отопителя. Также система призвана охлаждать не только сам двигатель, но и масло, жидкость в автоматической коробке передач. Иногда она действует и на дроссельный узел вместе с впускным коллектором.

В современной системе (будь то жидкостное или воздушное охлаждение двигателя) рассеивается до 35 процентов тепла, произведенного в результате горения топливо-воздушной смеси.

Устройство и принцип действия

В воздушной системе самым главным является воздушный поток. При помощи воздуха тепло отводится от камер сгорания, ГБЦ, масляных радиаторов. Система представляет собой вентилятор, охладительные ребра в цилиндрах и на ГБЦ. Также в устройстве имеется съемный кожух, дефлекторы и решение для контроля за работой системы. Вентилятор системы охлаждения двигателя оснащен сеткой для защиты лопастей от попадания посторонних предметов.

Дополнительные ребра позволяют увеличить площадь поверхности, которая контактирует с воздухом. За счет этого воздушное охлаждение двигателя эффективно справляется со своей задачей.

Поток воздуха при работе двигателя в принудительном порядке подается к мотору при помощи лопастей вентилятора – они преимущественно изготовлены из алюминия. Не нужно объяснять, наверное, почему включается вентилятора охлаждения на холодном двигателе. Воздушный поток проходит между ребрами, а затем равномерно разделяется за счет дефлекторов и проходит через все горячие детали двигателя. Таким образом, мотор не нагревается чрезмерно.

почему включается вентилятор охлаждения на холодном

Вентилятор подает в систему охлаждения поток воздуха объемом 30 кубических метров в минуту. Этого достаточно для обеспечения нормальной работы мотора с невысокой мощностью и небольшим объемом.

Как устроен вентилятор?

Данный узел является основным в воздушном охлаждении двигателя. Главная деталь – это ротор вентилятора. Чтобы оптимизировать воздушный поток, форму и конструкцию элементов тщательно просчитали инженеры.

Вентилятор представляет собой направляющий диффузор и ротор, оснащенный восемью лопатками, расположенными радиально. Диффузор обладает своими лопастями – они имеют переменное сечение. Главная их задача – создать направленный воздушный поток. Они сделаны неподвижными и равномерно распределены по окружности.

Лопасти на направляющем аппарате призваны менять направление потока воздуха – воздушный поток движется в сторону, которая противоположна вращению ротора. Это повышает давление воздуха и улучшает охлаждение двигателя.

Вентилятор на ранних конструкциях приводился в движение от шкива коленчатого вала с помощью приводного ремня. Направляющее устройство неподвижно и закреплено на блоке двигателя. В более современных четырехтактных двигателях воздушного охлаждения вентилятор приводится в действия за счет электродвигателя. Но таких моделей мало.

Естественная система воздушного охлаждения

Это считается наиболее простым решением. На внешней поверхности блока двигателя установлены специальные ребра, через которые и отдается максимальное количество тепла. Данную систему можно встретить на мотоциклах, различных мопедах и скутерах, поршневых моторах самого разного назначения.

Преимущества

Главное среди всех прочих преимуществ воздушного охлаждения двигателя – это простота конструкции. В системе отсутствует помпа, радиатор, термостат, патрубки и хомуты, трубки подвода и оттока антифриза.

Второе важное преимущество – высокая ремонтопригодность. Например, в тракторных силовых агрегатах имеются индивидуальные цилиндры. Если случилась поломка, то при необходимости можно заменить цилиндр или устранить неисправность. В двигателях с жидкостным охлаждением в случае повреждения какого-либо из цилиндров придется менять блок полностью либо выпрессовывать гильзы.

Для примера не стоит далеко ходить. Возьмем двигатель Tatra T815. Это мотор с воздушным охлаждением. Головки блока здесь сделаны раздельными. В случае необходимости ремонта не нужно снимать ГБЦ полностью. Даже очень серьезные работы по ремонту можно производить без демонтажа блока двигателя.

Двигатели, оснащенные воздушным охлаждением, более ресурсные. Если в моторе с жидкостной системой повредятся патрубки или ослабятся хомуты, то агрегат эксплуатировать нельзя, так как охлаждающая жидкость уйдет. Также существует опасность выброса горячей жидкости из системы. Всех этих недостатков лишены воздушные системы.

почему включается вентилятор на холодном двигателе

Даже серьезные повреждения охлаждаемой поверхности на блоке двигателя или ГБЦ не смогут помешать дальнейшему использованию мотора. Это очень большой плюс. Кроме того, двигателю нужно значительно меньше времени для выхода в рабочий режим – нет необходимости в прогреве жидкости, что актуально зимой. Все это обуславливает значительно меньшие затраты на обслуживание и эксплуатацию подобных силовых агрегатов.

Недостатки

Не обошлось и без недостатков. Прежде чем приобрести авто, оснащенный подобной системой охлаждения, следует знать основные минусы данных решений.

Так, работа двигателя сопровождается непомерно громким шумом. Шум этот создает работающий вентилятор. Еще один минус – это размеры, так как мотор комплектуется обдувающими устройствами. Даже при современных темпах развития технологий, воздушные потоки неравномерно направлены, а значит, есть риск локальных перегревов. Двигатели такого типа очень чувствительны к качеству бензина, масла, предъявляются высокие требования к состоянию основных деталей в моторе.

Но автомобили с такой системой прочно заняли свое место в автомобилестроении. Этими силовыми агрегатами оснащают грузовые авто, есть несколько легковых моделей. На воздушном охлаждении работает сельскохозяйственная и военная техника, некоторые дизельные двигатели.

почему вентилятор охлаждения на холодном двигателе

Популярные мифы

Первым известным автомобилем с воздушным охлаждением был «Запорожец». Он полностью подорвал доверие отечественного водителя к такой системе. Часто автовладельцы жаловались на сильные перегревы, недостаточную мощность и частые выходы из строя. При этом немецкий «Жук» с примерно такой же системой пользовался большой популярностью, спрос на него был очень хороший.

Давайте, основываясь на характеристиках немецкого автопрома, подробно рассмотрим и разрушим популярные мифы, которые преследуют двигатели такой конструкции.

ДВО проигрывает жидкостной системе за счет перегревов

Это не истина в последней инстанции. На самом деле температурные характеристики, наоборот, следует считать преимуществом. Естественно, за счет пониженной теплопроводности воздух просто не сможет так быстро отводить тепло, как в системах с антифризом.

почему вентилятор на холодном двигателе

Но разница между температурой на цилиндрах и температурой внешних сред значительно больше, чем между жидкостью и стенками блока и ГБЦ. Погода в меньшей степени способна влиять на температурный режим охлаждения. Двигатели с жидкостной системой имеют повышенный риск перегрева летом. Особенно это актуально в жаркий знойный день. Также владельцы могут столкнуться с проблемой, почему включается вентилятор охлаждения на холодном двигателе. В «воздушниках» такого нет.

Габариты

Выше среди недостатков мы выделили пункт о габаритах. Если сравнить между собой размеры моторов с разными типами охлаждения и прочими одинаковыми характеристиками, то преимущество все равно будет за «воздушником».

Даже несмотря на то, что вентилятор и дефлектор – это достаточно громоздкие устройства, параметры «воздушника» меньше, чем в варианте с жидкостным охлаждением.

Кроме того, для размещения традиционной водяной системы нужно больше пространства под капотом, чтобы разместить дополнительное оборудование. На кузове установлен немаленький радиатор с вентилятором. Немало места занимают шланги и патрубки.

«Воздушники» проигрывают в надежности

Статистика показывает, что в одном из пяти случаев отказа мотора виной является жидкостное охлаждение. Причина здесь в следующих деталях – термостат, радиатор, помпа. Даже самый современный двигатель воздушного охлаждения Tatra образца 89 года более надежен, чем мотор нового «Поло-Седан» или «Соляриса».

Что же касается «воздушников», то вероятность поломки значительно ниже, так как конструкция намного проще – только вентилятор и дефлектор.

«Воздушники» громкие

А вот это правда. Но даже огромный самосвал «Татра» не ревет, мотор просто более шумный. В особенностях конструкции не предусмотрено каких-либо эффективных звукопоглощающих систем. В жидкостных двигателях такие системы есть. Кроме того, шум усиливается за счет прохождения воздушных потоков через ребра цилиндров и головок.

почему включается вентилятор охлаждения на двигателе

Типичные неисправности

При всей надежности воздушных систем, поломки случаются и здесь. Одна из популярных неисправностей – это электроника. В системе имеется датчик температуры. Для тех, кто не знает, где находится датчик температуры двигателя: он расположен в масляном поддоне. В результате завышенных показаний данного датчика система может дать сбой.

Если на панели приборов загорелась лампа неисправности, то чаще всего причина заключается в обрыве ремня. Реже всего диагностируются проблемы, связанные с термостатом.

Особенности выбора масла

Есть мнение, что нужно использовать специальное масло для двигателей с воздушным охлаждением. И это так. Дело в том, что температура нагрузки на детали поршневой группы в двигателях с воздушным охлаждением значительно выше, чем у агрегатов с водяным.

В основе этих специальных масел чаще всего лежат полиальфаолефиновые масла грубой очистки на базе минеральной или синтетической природы. К этому комплексу применен комплект присадок, обеспечивающих надежную защиту двигателя, противостоящих залеганию колец, улучшающих энергосбережение. В любых маслах уже имеются добавки, которые эффективно защищают агрегат от заклинивания за счет устойчивой базовой формулы.

О ремонте и обслуживании

Для эксплуатации данных двигателей владелец должен немного понимать принцип работы системы и знать, где находится датчик температуры двигателя. В остальном, это надежная охлаждающая система, аналогов по простоте устройства которой нет. Не нужно раз в два года менять антифриз, не нужно использовать герметик для устранения течей, периодически менять помпу. И таких «не нужно» достаточно много.

почему включается вентилятор охлаждения на холодном двигателе

Заключение

Итак, мы выяснили, что собой представляет двигатель с воздушным охлаждением. Как видите, это весьма надежные агрегаты. Однако, как показывает статистика, серийных авто с такими ДВС очень мало. В большинстве автопроизводители практикуют классическое жидкостное охлаждение двигателя. Воздушное можно встретить разве что на некоторых грузовиках и на скутерах.

СУДОРЕМОНТ ОТ А ДО Я.: Система охлаждения ДВС.

Система охлаждения предназначена для отвода тепла от деталей двигателя, подверженных нагреву горячими газами и для поддержания допустимых температур, определяемых жаропрочностью материалов, термостабильностью масла и оптимальными условиями протекания рабочего процесса. В зависимости от конструкции ДВС количество тепла, отводимого в охлаждающую жидкость, составляет 15—35 % тепла, выделяемого при сгорании топлива в цилиндрах.
В качестве охлаждающей жидкости используется пресная и забортная вода, масло и дизельное топливо.
Для судовых ДВС используются проточная и замкнутая системы охлаждения. При проточной системе охлаждение двигателя осуществляется забортной водой, прокачиваемой насосом. Система забортной воды включает следующие основные элементы: кингстонные ящики с кингстонами, фильтры, насосы, трубопроводы, арматуру и приборы управления, сигнализации и контроля. Согласно Правилам Регистра СССР система должна иметь один днищевой и один—два бортовых кингстона. Система забортной воды может иметь два насоса, один из которых является резервным одновременно для пресной и забортной воды. Аварийное охлаждение двигателей может обеспечиваться от насосов холодильной установки или пожарной системы судна.
Проточная система охлаждения проста по конструкции, требует небольшого количества насосов, но двигатель охлаждается относительно холодной забортной водой (не более 50—55 С). Выше температуру поддерживать нельзя, так как уже при 45 С начинается интенсивное отложение солей на поверхности охлаждения. Кроме того, все полости системы, в которых протекает охлаждающая забортная вода, сильно загрязняются шламом. Отложения солей и шлама значительно ухудшают теплопередачу и нарушают нормальное охлаждение двигателя. Омываемые поверхности подвергаются значительной коррозии.
Современные судовые ДВС имеют, как правило, замкнутую (двухконтурную) систему охлаждения, при которой в двигателе циркулирует пресная забортная вода, охлаждаемая в специальных водяных холодильниках. Водяные холодильники прокачиваются забортной водой.
Одним из основных преимуществ этой системы является возможность поддержания охлаждаемых полостей в более чистом состоянии, так как система заполнена пресной или специально очищенной водой. Это в свою очередь позволяет легко поддерживать наивыгоднейшую температуру охлаждающей воды в зависимости от режима работы двигателя. Температура пресной воды, выходящей из двигателя, поддерживается следующая: для тихоходных ДВС 65—70 С, для быстроходных — 80—90 С. Замкнутая система охлаждения является более сложной, чем проточная и требует повышенного расхода энергии на работу насосов.
Для защиты поверхностей втулок и блоков со стороны охлаждения от коррозионно-кавитационного разрушения и образования накипи применяют антикоррозионные эмульсионные масла ВНИИНП—117/119, «Шелл Дромус ойл В» и другие. Эти масла имеют практически одинаковые физико-химические свойства и методику применения. Они нетоксичны и хранятся в металлической таре при температуре не ниже минус 30 С.
Антикоррозионные масла образуют с пресной водой стойкую непрозрачную эмульсию молочного цвета. Стойкость эмульсии зависит и от жесткости воды. Тонкая пленка антикоррозионного масла, покрывая поверхность охлаждения ДВС, предохраняет ее от коррозии, кавитационного разрушения и отложения накипи. Для сохранения этой пленки на поверхности охлаждения двигателя необходимо постоянно поддерживать рабочую концентрацию масла в охлаждающей воде около 0,5 % и применять воду определенного качества.
Антикоррозионные эмульсионные масла широко применяются в системах охлаждения ДВС, применяемых на промысловых судах. Методы обработки охлаждающей пресной воды приводятся в инструкциях по эксплуатации двигателей.
В системах охлаждения используются центробежные насосы с электроприводом. Иногда встречаются поршневые насосы, которые приводятся в действие от самого ДВС. Насосы охлаждения создают давление 0,1—0,3 МПа. Охлаждение современных среднеоборотных ДВС осуществляется в основном при помощи навешенных центробежных насосов забортной и пресной воды.
Принципиальная схема замкнутой системы охлаждения двигателя приведена на рисунке:
Замкнутый внутренний контур служит для охлаждения двигателя, а проточный внешний — для охлаждения холодильников пресной воды и масла.
Циркуляция воды по замкнутому контуру осуществляется при помощи центробежного насоса 8, подающего воду в нагнетательный трубопровод 10, из которого по отдельным патрубкам она подводится к нижней части блока двигателя для охлаждения каждого цилиндра. Из верхней части блока по переливным патрубкам вода поступает в крышки цилиндров, а из них по отводящему трубопроводу направляется в водяной холодильник 4 и далее во всасывающий трубопровод насоса 8. В системе охлаждения ДВС имеется терморегулятор 3 с термобаллоном 2, который автоматически поддерживает необходимую температуру воды за счет перепуска части ее мимо водяного холодильника 4. Первоначальное заполнение водой внутреннего контура производится через расширительный бак 1. Туда же направляется паровоздушная смесь из отводящего трубопровода двигателя.
Подача воды во внешний контур осуществляется автономным центробежным электронасосом 7, который забирает воду из кингстона через спаренный сетчатый фильтр 9 с запорными клапанами и подает ее последовательно к масляному 5 и водяному 4 холодильникам. Из водяного холодильника вода сливается за борт. Перед масляным холодильником установлен терморегулятор 6, который в зависимости от температуры масла регулирует количество воды, проходящее через холодильник.Температура и давление воды в системе охлаждения контролируется приборами местного и дистанционного контроля и системой аварийно-предупредительной сигнализации.
Охлаждение дизелей. Системы: проточная и замкнутая

При рассмотрении теплового баланса двигателя было установлено, что только часть тепла, выделяемого при сгорании топлива внутри цилиндров дизеля, превращается в индикаторную работу (до 47%). Из оставшегося тепла примерно 25% уносится с отходящими газами, а остальное тепло (25—28%) для предотвращения перегрева деталей двигателя отводят охлаждающей водой. Для отвода тепла в основных деталях двигателя (цилиндр, цилиндровая крышка, поршень, корпус выпускного клапана) устраивают специальные полости или зарубашеч-ные пространства, через которые пропускают охлаждающую воду.

Для охлаждения судовых дизелей применяют две системы: проточную и замкнутую. При проточной системе охлаждения специальный насос забирает воду из кингстона и прокачивает ее через зарубашечное пространство дизеля; при замкнутой системе через зарубашечное пространство дизеля прокачивается пресная вода, которая затем в специальном теплообменнике (охладителе) охлаждается забортной водой и снова направляется в двигатель. Проточная система значительно проще замкнутой, однако имеет ряд существенных недостатков, поэтому для охлаждения дизелей на судах, построенных в последние годы, не применяется.

Основные недостатки проточной системы охлаждения дизеля: возможность засорения зарубашечного пространства дизеля илом и другими взвешенными частицами, содержащимися в морской воде; интенсивное отложение солей в зарубашечном пространстве и образование накипи, плохо проводящей тепло и резко ухудшающей теплообмен, в результате чего происходит перегрев деталей и даже их разрушение. Для того чтобы предотвратить образование накипи в зарубашечном пространстве, приходится снижать температуру воды на выходе из дизеля до 50—55° С и тем самым ухудшать температурный режим двигателя и полезное использование тепла. При низкой температуре забортной воды для уменьшения температурных напряжений на входе воды в двигатель устраивают специальные смесители, куда подается вода из кингстона и часть воды, выходящей из двигателя. Минимальная допустимая температура воды на входе в двигатель +15° С. Однако необходимый перепад при охлаждении двигателя забортной водой составляет 10—20° С, таким образом, температура воды на входе составляет 35—45° С.

При замкнутой системе охлаждения применяют пресную воду, которая проходит техническую обработку и не содержит солей, в результате удается поддерживать высокий температурный режим двигателя (температура воды на выходе из систем, сообщенных с атмосферой, — до 85° С, а при наличии паровоздушного клапана у некоторых напряженных четырехтактных дизелей—до 105° С). Необходимый перепад при охлаждении двигателя пресной водой 7—15° С. Для того чтобы предотвратить засоление воды в случае нарушения плотности водоохладителя, давление в системе пресной воды устанавливают несколько большим, чем в системе забортной воды.

Для контроля пресной воды из системы периодически проводят анализ проб воды для определения содержания солей, и если соленость достигает критических значений, воду в системе заменяют.

Следует также отметить, что при охлаждении двигателя пресной водой масляный холодильник, как правило, охлаждается забортной водой.

Для предотвращения коррозии охлаждаемых деталей и трубопроводов в пресную воду добавляют различные присадки (например, бихромат калия) или антикоррозионные масла.

При охлаждении двигателя пресной водой система должна предусматривать аварийное охлаждение забортной водой. Переход на аварийное охлаждение должен осуществляться постепенно, чтобы не вызвать резких температурных напряжений, при этом необходимо соблюдать требования в отношении температур, рекомендуемых для проточных систем (не ниже 15° С на входе и не выше 50—55° С на выходе).

Некоторые фирмы в целях страховки рекомендуют при аварийном охлаждении еще более низкие температуры на выходе воды из двигателя (до 45° С). Если учесть, что двигатель, как правило, работает на аварийном охлаждении короткое время и потери тепла незначительны, эти рекомендации целесообразно выдерживать.

Схемы проточной и замкнутой систем охлаждения

При проточной системе охлаждения (рис. 68, а) забортная вода от кингстона насосом 1 прокачивается через масляный холодильник 2 (часть воды прокачивается мимо масляного холодильника) и смеситель 3, подается через регулировочные вентили 4 в нижнюю часть за-рубашечного пространства цилиндров 5. Из зарубашечного пространства цилиндров вода по патрубкам переходит в цилиндровые крышки 6, а оттуда в сливной коллектор 9 и из него через невозвратный клапан 10 сливается за борт.

Часть воды через терморегулятор 8 направляется в смеситель 3, который необходим для поддержания минимально допустимой температуры воды на входе. Импульс на терморегулятор 8 поступает от сливного коллектора 9, и поэтому он работает автоматически: чем выше температура воды на выходе, тем меньше воды терморегулятор направляет в смеситель 3. Индивидуальное регулирование температуры воды, выходящей из цилиндров, осуществляется вентилями 4 и 7.

При замкнутой системе охлаждения (рис 68, б) пресная вода, подаваемая насосом 5 из расширительного бака 14 через входные вентили 6, поступает на охлаждение цилиндров 7 и цилиндровых крышек 8, через вентили 9 индивидуальной регулировки горячая вода стекает в коллектор 10 и направляется в холодильник пресной воды 15, откуда поступает в расширителный бак 14, с которым связан коллектор 10.

Забортная вода из кингстона забирается насосом 1, прогоняется через масляный холодильник 2 и прокачивается далее через холодильник пресной воды 15 и невозвратный клапан 16 за борт.

Для автоматического поддержания постоянной температуры в замкнутую систему включают терморегулятор 12, который при низкой температуре пропускает часть воды мимо холодильника 15. Импульс на терморегулятор поступает от трубопровода горячей воды. Во время работы дизеля часть воды испаряется, а часть уходит через сальники насосов. Для пополнения утечек предусмотрен трубопровод и насос подачи воды из запасных танков, а также отвод воды из расширительного бака обратно в танк в случае ее перекачки.

Система предусматривает аварийное охлаждение двигателя забортной водой. Переход на забортную воду осуществляется поворотом трехходовых кранов 4 и 11 на 90°, а также отключением вентилями 3 и 13 расширительного бака 14 и водоохладителя 15. При этом температуру воды, выходящей из двигателя, регулируют вручную при помощи вентилей 6 и 9.

Недостатки замкнутой системы охлаждения: наличие дополнительного оборудования и трубопроводов. С целью предупреждения засоления пресной воды при нарушении плотности водоохладителя в системе пресной воды поддерживают более высокое давление.

Система охлаждения автомобиля – из чего она состоит и принцип ее работы

Добрый день, дорогие друзья. Сегодня речь пойдет о системе охлаждения автомобиля, а конкретнее – из чего она состоит, принцип ее работы. Рассмотрим и другие полезные вопросы, которые не раз возникают у владельцев авто. Назначение этой системы обсуждать не будем, если вы читаете эту статью, то это уже известно вам. Коснемся вопроса: «Чем ее промывать, как часто это нужно делать и как»? – предложу подробные рекомендации.

Система охлаждения автомобиля – устройство и принцип работы

Устройство автомобильной системы охлаждения

В большинстве случаев, она состоит из двух контуров. Это малый и большой круг. Давайте рассмотрим назначение каждого из них, и почему их несколько, если двигатель один, радиатор один и т.д.

Малый контур охлаждения

Его назначение – как можно быстрее нагреть двигатель до оптимальной температуры. Если этого не сделать, то будет повышенный износ деталей ДВС и большой расход топлива.

Схематическое изображение малого контура системы охлаждения автомобиля

В себя включает:

  • Рубашка охлаждения двигателя
  • Жидкостный насос, он же помпа
  • Шланги
  • Радиатор салонной печки (отопителя салона)
  • Термостат

Рассмотрим каждый из компонентов в отдельности

Охлаждающая рубашка ДВС

Она расположена в корпусе двигателя. В нем вырезаны или отлиты на заводе специальные каналы. По ним протекает охлаждающая жидкость (вода, антифриз или тосол). Эта жидкость отбирает тепло от цилиндров двигателя во время его работы, не давая ему перегреваться, позволяет работать в оптимальных температурных режимах.

Расположение рубашки системы охлаждения в блоке двигателя и головке блока цилиндров

Эти каналы отделены от головки блока цилиндра резиновой, а в большинстве случаев металлической прокладкой. Она герметизирует блок двигателя от головки, не давая жидкости перетекать в цилиндры, клапана. Если эта прокладка «рассохнется» и потеряет герметичность, то последует немедленный перегрев движка и попадание тосола в цилиндры.

Это чревато дорогостоящим ремонтом, так как охлаждающая жидкость по стенкам цилиндров стекает в масленый поддон, разбавляя моторное масло. Из-за этого оно теряет свои смазывающие свойства, а это задиры на трущихся деталях.

Помпа или циркуляционный насос

Из его названия следует и его назначение. Он заставляет циркулировать «охлаждайку» по системе. На некоторых автомобилях в действие его приводит либо ремень ГРМ, либо ремни навесных агрегатов.

Где находится и из чего состоит помпа системы охлаждения автомобиля

Читайте также: Что такое помпа в автомобиле и зачем она нужна, возможные поломки и как их избежать, описание ее конструкции

Чем опасно его поломка? – Нарушение циркуляции и гарантированный перегрев двигателя со всеми последствиями.

Из частых неисправностей можно отметить:

  1. Выход из строя подшипника. Он начинает гудеть, а со временем его просто заклинивает. Насос перестает работать.
  2. Износ сальника крыльчатки. В подкапотное пространство течет охлаждающая жидкость во время работы насоса.

Помпа является расходным материалом, поэтому ее ремонтом никто не занимается. Есть, конечно, гаражные умельцы, но срок отремонтированной детали не велик. Стоимость относительно не большая, поэтому меняется целиком.

Радиатор печки

Он, вместе с вентилятором обогрева салона встроен в малый контур системы охлаждения автомобиля. Это сделано для того, чтобы можно было нагреть салон уже в первые минуты работы двигателя. На большинстве современных автомобилях радиатор салонного отопителя не оснащается кранами, для перекрытия циркуляции жидкости через него. Он нагрет постоянно, при помощи заслонок водитель может контролировать температуру, перекрывая поток воздуха, проходящий через него.

Радиатор отопителя салона (печки) встроен в малый контур системы охлаждения авто

В отечественных авто, например в систему охлаждения ВАЗ 2101-07, встроен кран. При помощи его можно перекрыть подачу тосола в радиатор печки, но это сопровождается определенными трудностями, о которых поговорим в следующих статьях.

Термостат

Это механическое устройство. Контролирует температуру жидкости в системе охлаждения автомобиля. При необходимости открывается клапан и тосол течет по большому контуру, снижая температуру.

На разных моделях он расположен по-разному. В некоторых он вынесен наружу, например классические авто ВАЗ, в некоторых встроен в корпус блока цилиндров. В системе он может находиться до или после основного радиатора охлаждения. Устройство и принцип работы термостата читайте в следующих статьях.

Назначение термостата в системе охлаждения двигателя

В современных машинах часто стали применять термостаты с электронным управлением, при необходимости закрывая его, чтобы быстрее подогреть жидкость в системе.

Большой контур системы охлаждения

Он нужен для понижения температуры тосола или антифриза (смотря что залито в систему) до оптимальных параметров, чтобы не допустить перегрева двигателя.

Основной радиатор с вентилятором системы охлаждения автомобиля

Существуют модификации автомобилей, где за включение вентилятора радиатора отвечает сам датчик. При достижении определенной температуры антифриза, в корпусе его соединяются пластины, замыкающие электрическую цепь, вентилятор включается.

Расширительный бачок

Он служит для запаса охлаждающей жидкости и для сброса давления. В системе охлаждения автомобиля оно должно поддерживаться определенного значения, для оптимального температурного режима двигателя и сохранения герметичность системы в целом.

Из курса физики помните, что при нагревании любая жидкость расширяется. Так как автомобильная охлаждающая система мотора замкнутая, то при нагреве, антифриз или вода расширяются, излишки нужно куда-то девать. Это все перетекает в расширительный бачок. Если этого не будет, то при достижении высокого давления, в слабом месте может появиться течь. По-простому – тосол будет хлестать из сальников, порвутся шланги и т.д.

Но если вся жидкость при малейшем подогреве будет перетекать в расширительный бачок, то не будет достаточного давления для оптимальной работы. Как говорилось выше – это важный момент для хорошего охлаждения двигателя. Почему? – Чем выше давление, тем выше температура закипания тосола, тем больше тепла он сможет забрать из двигателя, не превратившись в пар.

Если в системе давление будет атмосферное, то при незначительном нагреве в жидкости будут образовываться пузырьки, она начнет кипеть. Это повышенный износ крыльчатки помпы, худшее охлаждение ДВС и т.д.

Система охлаждения автомобиля – расширительный бачок с крышкой радиатора

За его регулировку отвечает крышка (пробка) радиатора. В некоторых моделях она устанавливается на расширительный бачок. Состоит из двух клапанов: впускного и выпускного. Более детально о конструкции, принципе работы и назначению в других статьях.

Видео устройства и принципа работы системы охлаждения автомобиля:

Неисправности системы охлаждения

Одной из главных проблем, «выносящих» мозг автовладельцу – течь в местах соединения элементов системы охлаждения. Загляните под капот и вы будете в шоке. Куча хомутов, соединяющих шланги, патрубки, радиаторы, расширительный бачок и все это может начать течь.

Кроме этого радиаторы тоже подвержены этой болячке, что основной, что отопителя. Резина рассыхается, краны отопления закисают, их внутренние втулки разъедает агрессивная среда антифриза и высокая температура – они текут при открытии или закрытии.

Система охлаждения автомобиля и ее основные неисправности

Сальник помпы изнашивается, тосол попадает на подшипник. В результате ее заклинит и придется ее менять. В некоторых случаях жидкость вытекает в подкапотное пространство и под машиной нередко можно найти лужу.

Термостат – маленький прибор тоже может принести немало хлопот автовладельцу. Заклинивший клапан не откроется или не закроется в нужный момент. Автомобиль не будет прогреваться до оптимальных температур, если будет открыт большой контур системы охлаждения. Или наоборот, машина будет кипеть, жидкость будет «ходить» по малому кругу, минуя основной радиатор не охлаждаясь.

Даже маленькая пробка радиатора или расширительного бочка может преподнести неприятный сюрприз. Заклинившие внутренние клапаны не будут создавать оптимального давления в системе, или приведут к его сильному повышению. Результат – закипание авто или разрыв шланг и хомутов.

Как и чем промывать систему охлаждения автомобили и как часто это нужно делать

Все производители рекомендую менять тосол или антифриз раз в 5 лет. Это связано с химическим составом «охлаждайки». При постоянном нагреве и остывании она постепенно меняет свой состав. Как и любая другая жидкость она имеет свой срок службы.

Замена охлаждающей жидкости производится при каждой смене деталей системы охлаждения двигателя. А промывку нужно производить в случае:

  • Если приходилось доливать ОЖ неизвестного производителя или марки, отличающейся от той, которая залита в авто
  • При перегреве двигателя
  • Если заливалась или доливалась вода
  • При случайном смешивании тосола и антифриза (это разные жидкости, как по составу, так и по характеристикам).
  • Если в систему охлаждения попало масло

Для промывки системы применяются специализированные промывочные средства. Но их стоимость может быть высокой для некоторых автовладельцев. Некоторые для этих целей используют лимонную кислоту или Кока-Кола. Эти два ингредиента легко разъедают накипь в трубках радиатора и выводят ее. Можно промыть водой, но удалить накипь ей не получится. Подробная инструкция с рекомендациями, как правильно промывать систему охлаждения читайте в другой статье.

Видео по теме:


Как работает двигатель внутреннего сгорания — x-engineer.org

Подавляющее большинство автомобилей (легковых и коммерческих автомобилей), которые продаются сегодня, оснащены двигателями внутреннего сгорания . В этой статье мы расскажем, как работает четырехтактный двигатель внутреннего сгорания с двигателем .

Двигатель внутреннего сгорания классифицируется как тепловой двигатель . Он называется внутренним , потому что сгорание топливовоздушной смеси происходит внутри двигателя, в камере сгорания, и некоторые из сгоревших газов являются частью нового цикла сгорания.

По сути, двигатель внутреннего сгорания преобразует тепловую энергию горючей воздушно-топливной смеси в механическую энергию . Он называется , 4 такта, , потому что поршню требуется 4 такта для выполнения полного цикла сгорания. Полное название двигателя для легкового автомобиля: 4-х поршневой двигатель внутреннего сгорания , сокращенно ICE (Двигатель внутреннего сгорания).

Теперь давайте рассмотрим, какие из них являются основным компонентом ICE.

Изображение: детали двигателя внутреннего сгорания (DOHC)

Условные обозначения:
  1. распределительный вал выпускных клапанов
  2. ведро выпускных клапанов
  3. свеча зажигания
  4. ведро впускных клапанов
  5. впускные распределительные валы
  6. выпускные клапаны
  7. впускные клапаны
  8. головка цилиндра
  9. поршень
  10. поршневой палец
  11. шатун
  12. блок двигателя
  13. коленчатый вал

TDC — верхняя мертвая точка

BDC — нижняя мертвая точка

Головка цилиндра (8 ) обычно содержит распределительный вал (ы), клапаны, клапанные ковши, возвратные пружины клапана, свечи зажигания и форсунки (для двигателей с прямым впрыском).Через головку цилиндров протекает охлаждающая жидкость двигателя.

Внутри блока двигателя (12) мы можем найти поршень, шатун и коленчатый вал. Что касается головки цилиндров, то через блок цилиндров протекает охлаждающая жидкость, помогающая контролировать температуру двигателя.

Поршень движется внутри цилиндра от BDC до TDC. Камера сгорания — это объем, создаваемый между поршнем, головкой цилиндров и блоком цилиндров, когда поршень находится близко к ВМТ.

На рисунке 1 мы можем рассмотреть полный набор механических компонентов ДВС.Некоторые компоненты зафиксированы (например, головка цилиндра, блок цилиндров), а некоторые из них движутся. На рисунке ниже мы рассмотрим основную движущуюся часть ДВС, которая преобразует давление газа внутри цилиндра в механическую силу.

Изображение: движущиеся части двигателя внутреннего сгорания

Условные обозначения:

  1. Звездочка распределительного вала
  2. Поршень
  3. Коленчатый вал
  4. Шатун
  5. Клапан
  6. Клапан
  7. Клапан
  8. Распределительный вал

Вращение распределительного вала Синхронизация вращения с вращением коленчатого вала через зубчатый ремень или цепь.Положение впускного и выпускного клапанов должно быть точно синхронизировано с положением поршня, чтобы циклы сгорания происходили соответствующим образом.

Полный цикл двигателя для 4-тактного ДВС имеет следующие фазы (такты):

  1. впуск
  2. компрессия
  3. мощность (расширение)
  4. выпуск

Ход — это движение поршня между двумя мертвыми центры (снизу и сверху).

Теперь, когда мы знаем, какие компоненты ДВС, мы можем исследовать, что происходит в каждом такте цикла двигателя.В таблице ниже вы увидите положение поршня в начале каждого хода и подробную информацию о событиях, происходящих в цилиндре.

Ход 1 — INTAKE

Ход впуска двигателя внутреннего сгорания

В начале такта впуска поршень находится вблизи ВМТ. Впускной клапан открывается, поршень начинает двигаться в направлении BDC. Воздух (или воздушно-топливная смесь) втягивается в цилиндр. Этот ход называется INTAKE, потому что свежий воздух / смесь забирается в двигатель.Ход впуска заканчивается, когда поршень находится в BDC.

Во время такта впуска двигатель потребляет энергию (коленчатый вал вращается из-за инерции компонентов).

Ход 2 — СЖАТИЕ

Ход сжатия двигателя внутреннего сгорания

Ход сжатия начинается с поршня в BDC, после завершения такта впуска. Во время такта сжатия оба клапана, впускной и выпускной, закрыты, и поршни движутся в направлении ВМТ.Когда оба клапана закрыты, воздух / смесь сжимаются, достигая максимального давления, когда поршень приближается к ВМТ.

До того, как поршень достигнет ВМТ (но очень близко к нему), во время такта сжатия:

  • для бензинового двигателя: генерируется искра
  • для дизельных двигателей: впрыскивается топливо

Во время такта сжатия двигатель потребляет энергию (коленчатый вал вращается из-за инерции компонентов) больше, чем ход впуска.

Stroke 3 — POWER

Рабочий ход двигателя внутреннего сгорания

Рабочий ход начинается с поршня в ВМТ.Оба клапана, впускной и выпускной, все еще закрыты. Сгорание воздушно-топливной смеси начинается в конце такта сжатия, что вызывает значительное повышение давления внутри цилиндра. Давление внутри цилиндра толкает поршень вниз к BDC.

Только во время рабочего хода двигатель вырабатывает энергию.

Ход 4 — ВЫХЛОП

Ход выхлопа двигателя внутреннего сгорания

Ход выхлопа начинается с поршня на BDC, после окончания рабочего хода.Во время этого хода выпускной клапан открыт. Движение поршня от BDC к TDC выталкивает большую часть выхлопных газов из цилиндра в выхлопные трубы.

Во время такта выпуска двигатель потребляет энергию (коленчатый вал вращается из-за инерции компонентов).

Как видно, для полного цикла сгорания (двигатель) поршень должен выполнить 4 такта. Это означает, что один цикл двигателя занимает двух полных оборотов коленчатого вала (720 °).

Единственный ход, который производит крутящий момент (энергию) — это , рабочий ход , все остальные потребляют энергию.

Линейное движение поршня преобразуется во вращательное движение коленчатого вала через шатун.

Для лучшего понимания мы суммируем начальное положение поршня, положение клапана и энергетический баланс для каждого хода.

В энергетическом балансе 9284 В наличии
Ход хода Название хода Начальное положение поршня Состояние впускного клапана Состояние выпускного клапана Энергетический баланс Энергетический баланс TDC Открыто Закрыто Расходы
2 Сжатие BDC Закрыто Закрыто Расход
3 Мощность Закрыто Закрыто Закрыто Закрыто Производит
4 Выхлоп BDC Закрыто Открыто Расходует

В анимации ниже вы можете ясно увидеть, как работает двигатель внутреннего сгорания.Обратите внимание на положение поршня, положение клапана, момент, когда происходит воспламенение, и последовательность ударов.

Анимация двигателя внутреннего сгорания

В следующих статьях мы подробнее рассмотрим параметры, характеристики и компоненты двигателя внутреннего сгорания. Если у вас есть вопросы или комментарии по поводу этой статьи, используйте форму ниже для размещения.

Не забудьте лайкать, делиться и подписываться!

Проверьте свои знания в области двигателей внутреннего сгорания, пройдя тест ниже:

Викторина! (нажмите, чтобы открыть)

.
Основы двигателя внутреннего сгорания | Департамент энергетики

Двигатели внутреннего сгорания обеспечивают исключительную управляемость и долговечность, поскольку на них полагается более 250 миллионов транспортных средств в США. Наряду с бензином или дизельным топливом они также могут использовать возобновляемое или альтернативное топливо (например, природный газ, пропан, биодизельное топливо или этанол). Их также можно комбинировать с гибридными электрическими трансмиссиями для увеличения экономии топлива или с подключаемыми гибридными электрическими системами для расширения ассортимента гибридных электромобилей.

Как работает двигатель внутреннего сгорания?

Горение, также известное как сжигание, является основным химическим процессом выделения энергии из смеси топлива и воздуха. В двигателе внутреннего сгорания (ДВС) воспламенение и сгорание топлива происходит внутри самого двигателя. Затем двигатель частично преобразует энергию от сгорания для работы. Двигатель состоит из неподвижного цилиндра и движущегося поршня. Расширяющиеся газы сгорания толкают поршень, который в свою очередь вращает коленчатый вал.В конечном счете, благодаря системе передач в трансмиссии это движение приводит в движение колеса автомобиля.

В настоящее время производится два вида двигателей внутреннего сгорания: бензиновый двигатель с искровым зажиганием и дизельный двигатель с воспламенением от сжатия. Большинство из них — четырехтактные двигатели, что означает, что для завершения цикла необходимы четыре поршневых хода. Цикл включает в себя четыре различных процесса: впуск, сжатие, сгорание и рабочий ход, а также выпуск.

Бензиновые и дизельные двигатели с искровым зажиганием отличаются тем, как они подают и поджигают топливо.В двигателе с искровым зажиганием топливо смешивается с воздухом и затем вводится в цилиндр во время процесса впуска. После того, как поршень сжимает топливовоздушную смесь, искра зажигает ее, вызывая сгорание. Расширение газов сгорания толкает поршень во время рабочего хода. В дизельном двигателе только воздух вводится в двигатель и затем сжимается. Дизельные двигатели затем распыляют топливо в горячий сжатый воздух с подходящей, измеренной скоростью, вызывая его воспламенение.

Улучшение двигателей внутреннего сгорания

За последние 30 лет научные исследования и разработки помогли производителям сократить выбросы ДВС от загрязняющих веществ, таких как оксиды азота (NOx) и твердые частицы (ТЧ), более чем на 99% в соответствии с нормами выбросов EPA. ,Исследования также привели к улучшению производительности ДВС (мощность и время разгона 0-60 миль / ч) и эффективности, помогая производителям поддерживать или увеличивать экономию топлива.

Узнайте больше о наших передовых исследованиях и разработках двигателей внутреннего сгорания, направленных на то, чтобы сделать двигатели внутреннего сгорания более энергоэффективными с минимальными выбросами.

внутреннего сгорания | HowStuffWorks

Принцип, лежащий в основе любого поршневого двигателя внутреннего сгорания: если вы поместите небольшое количество топлива с высокой удельной энергией (например, бензина) в небольшое замкнутое пространство и подожжете его, высвобождается невероятное количество энергии в виде расширяющегося газа. ,

Вы можете использовать эту энергию для интересных целей. Например, если вы можете создать цикл, который позволяет запускать взрывы, подобные этому, сотни раз в минуту, и если вы можете использовать эту энергию полезным способом, то у вас есть ядро ​​автомобильного двигателя.

Почти каждый автомобиль с бензиновым двигателем использует четырехтактный цикл сгорания для преобразования бензина в движение. Четырехтактный подход также известен как цикл Отто , в честь Николая Отто, который изобрел его в 1867 году. Четыре удара показаны на Рис. 1 . Они:

  • Ход впуска
  • Ход сжатия
  • Ход горения
  • Ход выпуска

Этот контент не совместим с этим устройством.

Рисунок 1

Поршень соединен с коленчатым валом с помощью шатуна . Поскольку коленчатый вал вращается, он имеет эффект «сброса пушки». Вот что происходит, когда двигатель проходит свой цикл:

  1. Поршень запускается сверху, впускной клапан открывается, и поршень движется вниз, чтобы двигатель мог впустить цилиндр, наполненный воздухом и бензином. Это , ход впуска .Чтобы это работало, в воздух нужно подмешать только крошечную каплю бензина. (Часть 1 рисунка)
  2. Затем поршень перемещается назад, чтобы сжать эту топливно-воздушную смесь. Сжатие делает взрыв более мощным. (Часть 2 рисунка)
  3. Когда поршень достигает максимума своего хода, свеча зажигания зажигает искру, чтобы зажечь бензин. Заряд бензина в цилиндре взрывается , приводя поршень в действие. (Часть 3 рисунка)
  4. Как только поршень достигнет нижнего положения своего хода, выпускной клапан открывается, и выпуск выпускается из цилиндра, чтобы выйти из выхлопной трубы.(Часть 4 рисунка)

Теперь двигатель готов к следующему циклу, поэтому он потребляет еще один заряд воздуха и газа.

В двигателе линейное движение поршней преобразуется во вращательное движение коленчатым валом. Вращательное движение приятно, потому что мы все равно планируем вращать (вращать) колеса автомобиля.

Теперь давайте рассмотрим все части, которые работают вместе, чтобы это произошло, начиная с цилиндров.

,

Двигатель внутреннего сгорания — Energy Education

Двигатели внутреннего сгорания (ДВС) являются наиболее распространенной формой тепловых двигателей, так как они используются в транспортных средствах, лодках, кораблях, самолетах и ​​поездах. Они названы так, потому что топливо зажигается, чтобы сделать работу в двигателе. [1] Та же смесь топлива и воздуха затем выбрасывается в качестве выхлопных газов. Это можно сделать с помощью поршня (называемого поршневым двигателем) или с помощью турбины.

Закон идеального газа

Тепловые двигатели внутреннего сгорания работают по принципу закона идеального газа: [math] pV = nRT [/ math].Повышение температуры газа увеличивает давление, которое заставляет газ хотеть расширяться. [1] Двигатель внутреннего сгорания имеет камеру, в которую добавлено топливо, которое воспламеняется, чтобы повысить температуру газа.

Когда в систему добавляется тепло, это заставляет газ внутри расширяться. В поршневом двигателе это вызывает подъем поршня (см. Рисунок 2), а в газовой турбине горячий воздух нагнетается в камеру турбины, поворачивая турбину (Рисунок 1). Прикрепляя поршень или турбину к распределительному валу, двигатель способен преобразовывать часть подводимой энергии в систему в полезную работу. [2] Для сжатия поршня в двигателе с прерывистым сгоранием двигатель выпускает газ. Затем используется радиатор, чтобы система работала при постоянной температуре. Газовая турбина, которая использует непрерывное сгорание, просто истощает свой газ непрерывно, а не в цикле.

Поршни против турбин

Рис. 1. Схема газотурбинного двигателя. [3]

Двигатель, в котором используется поршень , , называется двигателем внутреннего сгорания с прерывистым движением , тогда как двигатель, в котором используется турбина , , называется двигателем сгорания непрерывного действия, .Разница в механике очевидна из-за названий, но разница в использовании менее очевидна.

Поршневой двигатель чрезвычайно чувствителен по сравнению с турбиной, а также более экономичен при низких выходах. Это делает их идеальными для использования в транспортных средствах, так как они также запускаются быстрее. Наоборот, турбина имеет превосходное отношение мощности к весу по сравнению с поршневым двигателем, и ее конструкция более надежна для непрерывной высокой производительности. Турбина также работает лучше, чем безнаддувный поршневой двигатель на больших высотах и ​​при низких температурах.Его легкий вес, надежность и высокая высотная способность делают турбины предпочтительным двигателем для самолетов. Турбины также широко используются на электростанциях для производства электроэнергии.

Четырехтактный двигатель

главная страница
Рисунок 2. 4-х тактный двигатель внутреннего сгорания. 1: впрыск топлива, 2: зажигание, 3: расширение (работа выполнена), 4: выхлоп. [4]

Хотя существует много видов двигателей внутреннего сгорания, четырехтактный поршневой двигатель (рис. 2) является одним из наиболее распространенных.Он используется в различных автомобилях (которые специально используют бензин в качестве топлива), таких как автомобили, грузовики и некоторые мотоциклы. Четырехтактный двигатель обеспечивает один рабочий ход на каждые два цикла поршня. Справа анимация четырехтактного двигателя и дальнейшее объяснение процесса ниже.

  1. Топливо впрыскивается в камеру.
  2. Топливо воспламеняется (в дизельном двигателе это происходит иначе, чем в бензиновом двигателе).
  3. Этот огонь толкает поршень, который является полезным движением.
  4. Отходы химикатов, по объему (или массе) это в основном водяной пар и углекислый газ. Там могут быть загрязнители, а также угарный газ от неполного сгорания.

Двухтактный двигатель

главная страница
Рисунок 3. Двухтактный двигатель внутреннего сгорания [5]

Как видно из названия, система требует только двух поршневых движений для выработки энергии. Основным дифференцирующим фактором, который позволяет двухтактному двигателю функционировать только с двумя поршневыми движениями, является то, что выпуск и впуск газа происходят одновременно, [6] , как видно на рисунке 3.Сам поршень используется в качестве клапана системы вместе с коленчатым валом для направления потока газов. Кроме того, из-за его частого контакта с движущимися компонентами, топливо смешивается с маслом для добавления смазки, что позволяет плавно перемещаться. В целом двухтактный двигатель содержит два процесса:

  1. Добавляется топливовоздушная смесь и поршень движется вверх (сжатие). Впускной канал открывается из-за положения поршня, и топливовоздушная смесь поступает в камеру хранения.Свеча зажигания зажигает сжатое топливо и начинает рабочий ход.
  2. Нагретый газ оказывает высокое давление на поршень, поршень движется вниз (расширение), отработанное тепло уходит.

Роторный (Ванкель) двигатель

главная страница
Рисунок 4. Цикл роторного двигателя. Он забирает воздух / топливо, сжимает его, зажигает, обеспечивая полезную работу, а затем истощает газ. [7]

В двигателе этого типа имеется ротор (внутренний круг, обозначенный буквой «B» на рис. 4), который содержится в корпусе овальной формы.Он выполняет общие четырехтактные этапы цикла (впуск, сжатие, зажигание, выпуск), однако эти этапы выполняются 3 раза за один оборот ротора , создавая три рабочих удара за оборот .

для дальнейшего чтения

Список литературы

  1. 1,0 1,1 Р. Д. Найт, «Тепловые двигатели и холодильники» в Физика для ученых и инженеров: стратегический подход, 3-е изд. Сан-Франциско, США: Pearson Addison-Wesley, 2008, ch.19, с.2, с.530
  2. ↑ Р. А. Хинрикс и М. Кляйнбах, «Тепло и работа», в Энергия: ее использование и окружающая среда , 5-е изд. Торонто, Онтарио Канада: Брукс / Коул, 2013, ч.4, с.93-122
  3. ↑ Wikimedia Commons [Online], доступно: https://upload.wikimedia.org/wikipedia/commons/4/4c/Jet_engine.svg
  4. ↑ Wikimedia Commons [Online], доступно: https://upload.wikimedia.org/wikipedia/commons/d/dc/4StrokeEngine_Ortho_3D_Small.gif
  5. File «Файл: Двухтактный двигатель.gif — Wikimedia Commons «, Commons.wikimedia.org, 2018. [Online]. Доступно: https://commons.wikimedia.org/wiki/File:Two-Stroke_Engine.gif.[Accesscessed: 17 мая-2018].
  6. ↑ C. Ву, Термодинамика и тепловые циклы. Нью-Йорк: Nova Science Publishers, 2007
  7. ↑ Wikimedia Commons [Online], доступно: http://upload.wikimedia.org/wikipedia/commons/f/fc/Wankel_Cycle_anim_en.gif
,

Leave a Comment

Ваш адрес email не будет опубликован. Обязательные поля помечены *